Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Nano Lett ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785400

ABSTRACT

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
Ecotoxicol Environ Saf ; 279: 116488, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776782

ABSTRACT

Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.

3.
Heliyon ; 10(10): e30994, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770334

ABSTRACT

The theories of relational regulation and compensatory Internet use suggest that intolerance of uncertainty influences smartphone addiction (SPA), which in turn is influenced by other aspects. This study used previous results to examine how intolerance of uncertainty affects SPA in PhD and master's degree programs. A convenience sample comprising 1727 master's and PhD students (99.9 %; 50.7 % female; Mage = 27.71; SD = 3.80; range = 21-43) was recruited. Using established questionnaires, we measured SPA, anxiety, positive coping style, perceived social support, and intolerance of uncertainty. The results demonstrated that intolerance of uncertainty positively affects SPA in terms of predictive power. Furthermore, anxiety and positive coping style mediate that link in a cascade fashion. A greater SPA indicates that the individual is less likely to use a positive coping style, has a higher anxiety level, and has a lower tolerance for uncertainty. While thinking about how intolerance of uncertainty affects anxiety and positive coping style, perceived social support mediates the relationship. Intolerance of uncertainty has less impact on anxiety and positive coping style when perceived social support is high. These results indicate the possibility of examining SPA prevention and intervention from several angles. Therefore, emotional regulation, which modifies anxiety and the tendency to use a positive coping style, may reduce the impact of intolerance of uncertainty on SPA. Another successful strategy for reducing smartphone addiction is to provide social support from loved ones and the community at large.

4.
Conserv Biol ; : e14266, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578127

ABSTRACT

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

5.
Molecules ; 29(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611936

ABSTRACT

Efficient sensors for toluene detecting are urgently needed to meet people's growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas sensors based on pure MOS have certain limitations in selectivity, operating temperature, and long-term stability, which hinders their further practical applications. Noble metals (including Ag, Au, Pt, Pd, etc.) have the ability to enhance the performance of MOS-based sensors via surface functionalization. Herein, ZnO nanoflowers (ZNFs) modified with bimetallic AuPt are prepared for toluene detection through hydrothermal method. The response of a AuPt@ZNF-based gas sensor can reach 69.7 at 175 °C, which is 30 times, 9 times, and 10 times higher than that of the original ZNFs, Au@ZNFs, and Pt@ZNFs, respectively. Furthermore, the sensor also has a lower optimal operating temperature (175 °C), good stability (94% of previous response after one month), and high selectivity towards toluene, which is the result of the combined influence of the electronic and chemical sensitization of noble metals, as well as the unique synergistic effect of the AuPt alloy. In summary, AuPt@ZNF-based sensors can be further applied in toluene detection in practical applications.

6.
Micromachines (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675352

ABSTRACT

With the rapid development of semiconductor technology, the reduction in device operating voltage and threshold voltage has made integrated circuits more susceptible to the effects of particle radiation. Moreover, as process sizes decrease, the impact of charge sharing effects becomes increasingly severe, with soft errors caused by single event effects becoming one of the main causes of circuit failures. Therefore, the study of sensitivity evaluation methods for integrated circuits is of great significance for promoting the optimization of integrated circuit design, improving single event effect experimental methods, and enhancing the irradiation reliability of integrated circuits. In this paper, we first established a device model for the charge sharing effect and simulated it under reasonable conditions. Based on the simulation results, we then built a neural network model to predict the charge amounts in primary and secondary devices. We also propose a comprehensive automated method for calculating soft errors in unit circuits and validated it through TCAD simulations, achieving an error margin of 2.8-4.3%. This demonstrated the accuracy and effectiveness of the method we propose.

7.
Sci Total Environ ; 926: 172018, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547988

ABSTRACT

The improper disposal of large amounts of phosphogypsum generated during the production process of the phosphorus chemical industry (PCI) still exists. The leachate formed by phosphogypsum stockpiles could pose a threat to the ecological environment and human health. Nevertheless, information regarding the harmful effects of phosphogypsum leachate on organisms is still limited. Herein, the physicochemical characteristics of phosphogypsum leachate were analyzed, and its toxicity effect on zebrafish (Danio rerio), particularly in terms of hepatotoxicity and potential mechanisms, were evaluated. The results indicated that P, NH3-N, TN, F-, As, Cd, Cr, Co, Ni, Zn, Mn, and Hg of phosphogypsum leachate exceeded the V class of surface water environmental quality standards (GB 3838-2002) to varying degrees. Acute toxicity test showed that the 96 h LC50 values of phosphogypsum leachate to zebrafish was 2.08 %. Under exposure to phosphogypsum leachate, zebrafish exhibited concentration-dependent liver damage, characterized by vacuolization and infiltration of inflammatory cells. The increased in Malondialdehyde (MDA) content and altered activities of antioxidant enzymes in the liver indicated the induction of oxidative stress and oxidative damage. The expression of apoptosis-related genes (P53, PUMA, Caspase3, Bcl-2, and Bax) were up-regulated at low dosage group and down-regulated at medium and high dosage groups, suggesting the occurrence of hepatocyte apoptosis or necrosis. Additionally, phosphogypsum leachate influenced the composition of the zebrafish gut microbiota by reducing the relative abundance of Bacteroidota, Aeromonas, Flavobacterium, Vibrio, and increasing that of Rhodobacter and Pirellula. Correlation analysis revealed that gut microbiota dysbiosis was associated with phosphogypsum leachate-induced hepatotoxicity. Altogether, exposure to phosphogypsum leachate caused liver damage in zebrafish, likely through oxidative stress and apoptosis, with the intestinal flora also playing a significant role. These findings contribute to understanding the ecological toxicity of phosphogypsum leachate and promote the sustainable development of PCI.


Subject(s)
Calcium Sulfate , Chemical and Drug Induced Liver Injury , Water Pollutants, Chemical , Animals , Humans , Zebrafish/metabolism , Oxidative Stress , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism
8.
Arch Microbiol ; 206(4): 163, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483624

ABSTRACT

To enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.


Subject(s)
Bacillus subtilis , Cellulase , Bacillus subtilis/metabolism , Cellulase/metabolism , Cellulose/metabolism
9.
Micromachines (Basel) ; 15(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38542568

ABSTRACT

With the development of high-voltage and high-frequency switching circuits, GaN high-electron-mobility transistor (HEMT) devices with high bandwidth, high electron mobility, and high breakdown voltage have become an important research topic in this field. It has been found that GaN HEMT devices have a drift in threshold voltage under the conditions of temperature and gate stress changes. Under high-temperature conditions, the difference in gate contact also causes the threshold voltage to shift. The variation in the threshold voltage affects the stability of the device as well as the overall circuit performance. Therefore, in this paper, a review of previous work is presented. Temperature variation, gate stress variation, and gate contact variation are investigated to analyze the physical mechanisms that generate the threshold voltage (VTH) drift phenomenon in GaN HEMT devices. Finally, improvement methods suitable for GaN HEMT devices under high-temperature and high-voltage conditions are summarized.

10.
Nanoscale ; 16(11): 5504-5520, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38410877

ABSTRACT

Photodetectors integrating substrates and semiconductor materials are increasingly attractive for applications in optical communication, optical sensing, optical computing, and military owing to the unique optoelectronic properties of semiconductor materials. However, it is still a challenge to realize high-performance photodetectors by only integrating substrates and semiconductor materials because of the limitation of incident light in contact with sensitive materials. In recent years, waveguides such as silicon (Si) and silicon nitride (Si3N4) have attracted extensive attention owing to their unique optical properties. Waveguides can be easily hetero-integrated with semiconductor materials, thus providing a promising approach for realizing high-performance photodetectors. Herein, we review recent advances in photodetectors integrating waveguides in two parts. The first involves the waveguide types and semiconductor materials commonly used to fabricate photodetectors, including Si, Si3N4, gallium nitride, organic waveguides, graphene, and MoTe2. The second involves the photodetectors of different wavelengths that integrate waveguides, ranging from ultraviolet to infrared. These hybrid photodetectors integrating waveguides and semiconductor materials provide an alternative way to realize multifunctional and high-performance photonic integrated chips and circuits.

11.
Nanotechnology ; 35(22)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38387089

ABSTRACT

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

12.
Nanotechnology ; 35(19)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38316045

ABSTRACT

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

13.
Nat Struct Mol Biol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388831

ABSTRACT

Sphingomyelin (SM) has key roles in modulating mammalian membrane properties and serves as an important pool for bioactive molecules. SM biosynthesis is mediated by the sphingomyelin synthase (SMS) family, comprising SMS1, SMS2 and SMS-related (SMSr) members. Although SMS1 and SMS2 exhibit SMS activity, SMSr possesses ceramide phosphoethanolamine synthase activity. Here we determined the cryo-electron microscopic structures of human SMSr in complexes with ceramide, diacylglycerol/phosphoethanolamine and ceramide/phosphoethanolamine (CPE). The structures revealed a hexameric arrangement with a reaction chamber located between the transmembrane helices. Within this structure, a catalytic pentad E-H/D-H-D was identified, situated at the interface between the lipophilic and hydrophilic segments of the reaction chamber. Additionally, the study unveiled the two-step synthesis process catalyzed by SMSr, involving PE-PLC (phosphatidylethanolamine-phospholipase C) hydrolysis and the subsequent transfer of the phosphoethanolamine moiety to ceramide. This research provides insights into the catalytic mechanism of SMSr and expands our understanding of sphingolipid metabolism.

14.
Sci Rep ; 14(1): 2010, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307897

ABSTRACT

Tibetan cultures reflect deeply rooted, regional interactions and diverse subsistence practices across varied high-altitude environments of the Tibetan Plateau. Yet, it remains unclear how these cultural relationships and social interactions took shape through time and how they were influenced by ecologically oriented behavioral strategies (e.g. mobility) emerging in prehistory. Recent applications of network analysis provide novel tools to quantitatively measure shared forms of material culture, but there have been fewer attempts to couple social network analysis with fine-grained geospatial modelling of prehistoric human mobility in Tibet. In this study, we developed an integrated high-resolution geospatial model and network analysis that simulates and correlates subsistence-based mobility and ceramic-based cultural material connectivity across the Tibetan Plateau. Our analysis suggests that (1) ecologically driven patterns of subsistence-based mobility correspond geographically with Bronze and Iron Ages settlement patterns across the Tibetan Plateau; (2) diverse material interaction networks among communities within western and central Tibet and trans-Himalayan connectivity across the broader Inner Asian Mountain Corridor can be linked to modeled differences in regional networks of subsistence mobility. This research provides ecological and archaeological insights into how subsistence-oriented mobility and interaction may have shaped documented patterns of social and material connectivity among regional Bronze and Iron Age communities of the Tibetan Plateau, prompting a reconsideration of Tibet's long-term cultural geography.

15.
Front Psychiatry ; 15: 1328857, 2024.
Article in English | MEDLINE | ID: mdl-38347882

ABSTRACT

Background: The move away from investigating mental disorders as whole using sum scores to the analysis of symptom-level interactions using network analysis has provided new insights into comorbidities. The current study explored the dynamic interactions between depressive and anxiety symptoms in older Chinese adults with diabetes mellitus (DM) and identified central and bridge symptoms in the depression-anxiety network to provide potential targets for prevention and intervention for depression and anxiety. Methods: This study used a cross-sectional design with data from the 2017-2018 wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). A regularized partial correlation network for depressive and anxiety symptoms was estimated based on self-reported scales completed by 1685 older adults with DM aged 65 years or older. Depressive and anxiety symptoms were assessed using the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) and the Seven-Item Generalized Anxiety Disorder Scale (GAD-7), respectively. Expected influence (EI) and bridge expected influence (BEI) indices were calculated for each symptom. Results: According to cutoff scores indicating the presence of depression and anxiety, the prevalences of depression and anxiety in our sample were 52.9% and 12.8%, respectively. The comorbidity rate of depression and anxiety was 11.5%. The six edges with the strongest regularized partial correlations were between symptoms from the same disorder. "Feeling blue/depressed", "Nervousness or anxiety", "Uncontrollable worry", "Trouble relaxing", and "Worry too much" had the highest EI values. "Nervousness or anxiety" and "Everything was an effort" exhibited the highest BEI values. Conclusion: Central and bridge symptoms were highlighted in this study. Targeting these symptoms may be effective in preventing the comorbidity of depressive and anxiety symptoms and facilitate interventions in older Chinese adults with DM who are at risk for or currently have depressive and anxiety symptoms.

16.
Environ Res ; 247: 118173, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38224935

ABSTRACT

The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Rivers , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
17.
Nanotechnology ; 35(15)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38176077

ABSTRACT

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

18.
Nanoscale ; 16(3): 1147-1155, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38186376

ABSTRACT

The regulation of hollow morphology, band structure modulation of solid solution, and introduction of cocatalysts greatly promote the separation of electron-hole pairs in photocatalytic processes, which is of great significance for the process of photocatalytic hydrogen evolution (PHE). In this study, we constructed Zn1-xCdxS hollow solid solution photocatalysts using template and ion exchange methods, and successfully loaded PdS quantum dots (PdS QDs) onto the solid solution through in situ sulfidation. Significantly, the 0.5 wt% PdS QDs/Zn0.6Cd0.4S composite material achieved a H2 production rate of 27.63 mmol g-1 h-1 in the PHE process. The hollow structure of the composite material enhances processes such as light reflection and scattering, the band structure modulation of the solid solution enables the electron-hole pairs to reach an optimal exciton recombination balance, and the modification of PdS QDs provides abundant sites for oxidation, thereby promoting the proton reduction and hydrogen evolution rate. This work provides valuable guidance for the rational design of efficient composite PHE catalysts with strong internal electric field.

19.
Hum Brain Mapp ; 45(1): e26559, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38083976

ABSTRACT

BACKGROUND: Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS: We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS: Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS: Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.


Subject(s)
Transcranial Direct Current Stimulation , Adult , Humans , Transcranial Direct Current Stimulation/methods , Executive Function , Quality of Life , Brain , Memory, Short-Term/physiology
20.
Sci Adv ; 9(50): eadi6857, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091398

ABSTRACT

Domestic yak, cattle, and their hybrids are fundamental to herder survival at high altitudes on the Tibetan Plateau. However, little is known about their history. Bos remains are uncommon in this region, and ancient domestic yak have not been securely identified. To identify Bos taxa and investigate their initial management, we conducted zooarchaeological analyses of 193 Bos specimens and sequenced five nuclear genomes from recently excavated assemblages at Bangga. Morphological data indicated that more cattle than yak were present. Ancient mitochondrial DNA and nuclear genome sequences identified taurine cattle and provided evidence for domestic yak and yak-cattle hybridization ~2500 years ago. Reliance on diverse Bos species and their hybrid has increased cattle adaptation and herder resilience to plateau conditions. Ancient cattle and yak at Bangga were closely related to contemporary livestock, indicating early herder legacies and the continuity of cattle and yak husbandry on the Tibetan Plateau.


Subject(s)
DNA, Mitochondrial , Genome , Animals , Cattle , Tibet , DNA, Mitochondrial/genetics , Base Sequence , Hybridization, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...