Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399445

ABSTRACT

The anti-oral cancer effects of santamarine (SAMA), a Michelia compressa var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells. SAMA selectively inhibits oral cancer cell viability more than normal cells, reverted by the oxidative stress remover N-acetylcysteine (NAC). The evidence of oxidative stress generation, such as the induction of reactive oxygen species (ROS) and mitochondrial superoxide and the depletion of mitochondrial membrane potential and glutathione, further supports this ROS-dependent selective antiproliferation. SAMA arrests oral cancer cells at the G2/M phase. SAMA triggers apoptosis (annexin V) in oral cancer cells and activates caspases 3, 8, and 9. SAMA enhances two types of DNA damage in oral cancer cells, such as γH2AX and 8-hydroxy-2-deoxyguanosine. Moreover, all of these anticancer mechanisms of SAMA are more highly expressed in oral cancer cells than in normal cells in concentration and time course experiments. These above changes are attenuated by NAC, suggesting that SAMA exerts mechanisms of selective antiproliferation that depend on oxidative stress while maintaining minimal cytotoxicity to normal cells.

2.
New J Phys ; 21(5)2019.
Article in English | MEDLINE | ID: mdl-32855619

ABSTRACT

Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494-7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2-30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system's topology (Laughlin 1981 Phys. Rev. B 23 5632-33). At magnetic fields beyond the reach of current condensed matter experiment, around 104 T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405-8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl etal 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems.

3.
Proc Natl Acad Sci U S A ; 114(10): 2503-2508, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28196896

ABSTRACT

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

4.
Phys Rev Lett ; 112(11): 113006, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702363

ABSTRACT

Calcium monofluoride (CaF) is magnetically slowed and trapped using optical pumping. Starting from a collisionally cooled slow beam, CaF with an initial velocity of ∼ 30 m/s is slowed via magnetic forces as it enters a 800 mK deep magnetic trap. Employing two-stage optical pumping, CaF is irreversibly loaded into the trap via two scattered photons. We observe a trap lifetime exceeding 500 ms limited by background collisions. This method paves the way for cooling and magnetic trapping of chemically diverse molecules without closed cycling transitions.

5.
Phys Rev Lett ; 110(17): 173202, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679723

ABSTRACT

We present a quantitative study of suppression of cold inelastic collisions by the spin-orbit interaction. We prepare cold ensembles of >10(11) Al(2P(1/2)) atoms via cryogenic buffer-gas cooling and use a single-beam optical pumping method to measure their magnetic (m(J)-changing) and fine-structure (J-changing) collisions with 3He atoms at millikelvin temperatures over a range of magnetic fields from 0.5 to 6 T. The experimentally determined rates are in good agreement with the functional form predicted by quantum scattering calculations using ab initio potentials. This comparison provides direct experimental evidence for a proposed model of suppressed inelasticity in collisions of atoms in 2P(1/2) states [T. V. Tscherbul et al., Phys. Rev. A 80, 040701(R) (2009)], which may allow for sympathetic cooling of other 2P(1/2) atoms (e.g., In, Tl and metastable halogens).

6.
ACS Appl Mater Interfaces ; 5(4): 1460-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23384046

ABSTRACT

Nanocasting technique was used to obtain a biomimetic superhydrophobic electroactive polyimide (SEPI) surface structure from a natural Xanthosoma sagittifolium leaf. An electroactive polyimide (EPI) was first synthesized through thermal imidization. An impression of the superhydrophobic Xanthosoma sagittifolium leaf was then nanocasted onto the surface of the EPI so that the resulting EPI was superhydrophobic and would prevent corrosion. Polydimethylsiloxane (PDMS) was then used as a negative template to transfer the impression of the superhydrophobic surface of the biomimetic EPI onto a cold-rolled steel (CRS) electrode. The superhydrophobic electroactive material could be used as advanced coatings that protect metals against corrosion. The morphology of the surface of the as-synthesized SEPI coating was investigated using scanning electron microscopy (SEM). The surface showed numerous micromastoids, each decorated with many nanowrinkles. The water contact angle (CA) for the SEPI coating was 155°, which was significantly larger than that for the EPI coating (i.e., CA = 87°). The significant increase in the contact angle indicated that the biomimetic morphology effectively repelled water. Potentiodynamic and electrochemical impedance spectroscopic measurements indicated that the SEPI coating offered better protection against corrosion than the EPI coating did.

8.
Phys Chem Chem Phys ; 13(42): 18986-90, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21796294

ABSTRACT

Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. In one regime, a modestly boosted beam has a forward velocity of v(f) = 65 m s(-1), a narrow velocity spread, and a flux of 10(9) molecules per pulse. In the other regime, our slowest beam has a forward velocity of v(f) = 40 m s(-1), a longitudinal temperature of 3.6 K, and a flux of 5 × 10(8) molecules per pulse.

9.
Phys Rev Lett ; 106(5): 053201, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405394

ABSTRACT

We present an experimental and theoretical study of atom-molecule collisions in a mixture of cold, trapped N atoms and NH molecules at a temperature of ∼600 mK. We measure a small N+NH trap loss rate coefficient of k(loss)(N+NH)=9(5)(3)×10(-13) cm(3) s(-1). Accurate quantum scattering calculations based on ab initio interaction potentials are in agreement with experiment and indicate the magnetic dipole interaction to be the dominant loss mechanism. Our theory further indicates the ratio of N+NH elastic-to-inelastic collisions remains large (>100) into the mK regime.

10.
Phys Rev Lett ; 102(1): 013003, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257187

ABSTRACT

We measure and theoretically determine the effect of molecular rotational splitting on Zeeman relaxation rates in collisions of cold 3Sigma molecules with helium atoms in a magnetic field. All four stable isotopomers of the imidogen (NH) molecule are magnetically trapped and studied in collisions with 3He and 4He. The 4He data support the predicted 1/B_{e};{2} dependence of the collision-induced Zeeman relaxation rate coefficient on the molecular rotational constant B_{e}. The measured 3He rate coefficients are much larger than the 4He coefficients, depend less strongly on B_{e}, and theoretical analysis indicates they are strongly affected by a shape resonance. The results demonstrate the influence of molecular structure on collisional energy transfer at low temperatures.

11.
Phys Rev Lett ; 100(8): 083003, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18352622

ABSTRACT

The v=1-->0 radiative lifetime of NH(X(3)Sigma(-),v=1,N=0) is determined to be tau_(rad,exp.)=37.0+/-0.5_(stat)+2.0/-0.8_(syst) ms, corresponding to a transition dipole moment of |mu_(10)|=0.0540_(-0.0018)(+0.0009) D. To achieve sufficiently long observation times, NH(X;{3}Sigma;{-},v=1) radicals are magnetically trapped using helium buffer-gas loading. The rate constant for background helium-induced collisional quenching was determined to be k_(v=1)<3.9x10(-15) cm(3) s(-1), which yields the quoted systematic uncertainty on tau_{rad,exp.}. With a new ab initio dipole moment function and a Rydberg-Klein-Rees potential, we calculate a lifetime of 36.99 ms, in agreement with our experimental value.

12.
Phys Rev Lett ; 98(21): 213001, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17677770

ABSTRACT

NH radicals are magnetically trapped and their Zeeman relaxation and energy transport collision cross sections with helium are measured. Continuous buffer-gas loading of the trap is direct from a room-temperature molecular beam. The Zeeman relaxation (inelastic) cross section of magnetically trapped electronic, vibrational, and rotational ground state NH molecules in collisions with 3He is measured to be 3.8+/-1.1 x 10(-19) cm(2) at 710 mK. The NH-He energy transport cross section is also measured, indicating a ratio of diffusive to inelastic cross sections of gamma=7 x 10(4), in agreement with recent theory [R. V. Krems, H. R. Sadeghpour, A. Dalgarno, D. Zgid, J. Klos, and G. Chalasinski, Phys. Rev. A 68, 051401 (2003)10.1103/PhysRevA.68.051401].

SELECTION OF CITATIONS
SEARCH DETAIL
...