Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Aging (Albany NY) ; 16(5): 4609-4630, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428405

ABSTRACT

Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.


Subject(s)
Exosomes , MicroRNAs , Satellite Cells, Skeletal Muscle , Mice , Animals , Satellite Cells, Skeletal Muscle/metabolism , Exosomes/metabolism , Muscle, Skeletal/physiology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Regeneration/physiology
2.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547056

ABSTRACT

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Subject(s)
Amoeba , Cell Line, Tumor , Cell Movement , Physical Phenomena
3.
FEBS Open Bio ; 14(4): 584-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366735

ABSTRACT

Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.


Subject(s)
Muscular Atrophy , Oleanolic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
4.
Acta Physiol (Oxf) ; 240(3): e14103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288566

ABSTRACT

AIM: Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS: Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS: During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION: Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.


Subject(s)
Extracellular Vesicles , Fibronectins , Mice , Animals , Fibronectins/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, White , Obesity/metabolism , Transcription Factors/metabolism , Thermogenesis , Extracellular Vesicles/metabolism , Adipose Tissue, Brown
5.
Eur Radiol ; 34(4): 2608-2618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37840099

ABSTRACT

OBJECTIVE: To develop a bimodal nomogram to reduce unnecessary biopsies in breast lesions with discordant ultrasound (US) and mammography (MG) Breast Imaging Reporting and Data System (BI-RADS) assessments. METHODS: This retrospective study enrolled 706 women following opportunistic screening or diagnosis with discordant US and MG BI-RADS assessments (where one assessed a lesion as BI-RADS 4 or 5, while the other assessed the same lesion as BI-RADS 0, 2, or 3) from two medical centres between June 2019 and June 2021. Univariable and multivariable logistic regression analyses were used to develop the nomogram. DeLong's and McNemar's tests were used to assess the model's performance. RESULTS: Age, MG features (margin, shape, and density in masses, suspicious calcifications, and architectural distortion), and US features (margin and shape in masses as well as calcifications) were independent risk factors for breast cancer. The nomogram obtained an area under the curve of 0.87 (95% confidence interval (CI), 0.83-0.91), 0.91 (95% CI, 0.87 - 0.96), and 0.92 (95% CI, 0.86-0.98) in the training, internal validation, and external testing samples, respectively, and demonstrated consistency in calibration curves. Coupling the nomogram with US reduced unnecessary biopsies from 74 to 44% and the missed malignancies rate from 13 to 2%. Similarly, coupling with MG reduced missed malignancies from 20 to 6%, and 63% of patients avoided unnecessary biopsies. Interobserver agreement between US and MG increased from - 0.708 (poor agreement) to 0.700 (substantial agreement) with the nomogram. CONCLUSION: When US and MG BI-RADS assessments are discordant, incorporating the nomogram may improve the diagnostic accuracy, avoid unnecessary breast biopsies, and minimise missed diagnoses. CLINICAL RELEVANCE STATEMENT: The nomogram developed in this study could be used as a computer program to assist radiologists with detecting breast cancer and ensuring more precise management and improved treatment decisions for breast lesions with discordant assessments in clinical practice. KEY POINTS: • Coupling the nomogram with US and mammography improves the detection of breast cancers without the risk of unnecessary biopsy or missed malignancies. • The nomogram increases mammography and US interobserver agreement and enhances the consistency of decision-making. • The nomogram has the potential to be a computer program to assist radiologists in identifying breast cancer and making optimal decisions.


Subject(s)
Breast Neoplasms , Nomograms , Female , Humans , Retrospective Studies , Ultrasonics , Mammography/methods , Breast Neoplasms/pathology , Biopsy
6.
Anal Bioanal Chem ; 416(9): 2107-2115, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135761

ABSTRACT

Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.


Subject(s)
Extracellular Matrix , Multiomics , Humans , Cell Movement , Extracellular Matrix/metabolism , Signal Transduction , Cell Transformation, Neoplastic , Tumor Microenvironment
7.
Small Methods ; : e2301198, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38152955

ABSTRACT

Electroporation techniques have emerged as attractive tools for intracellular delivery, rendering promising prospects towards clinical therapies. Transient disruption of membrane permeability is the critical process for efficient electroporation-based cargo delivery. However, smart nanotools for precise characterization of transient membrane changes induced by strong electric pulses are extremely limited. Herein, multivalent membrane-anchored fluorescent nanoprobes (MMFNPs) that take advantages of flexible functionalization and spatial arrangement of DNA frameworks are developed for in situ evaluation of electric field-induced membrane permeability during reversible electroporation . Single-molecule fluorescence imaging techniques are adopted to precisely  verify the excellent analytical performance of the engineered MMFNPs. Benefited from tight membrane anchoring and sensitive adenosine triphosphate (ATP) profiling, varying degrees of membrane disturbances are visually exhibited under different intensities of the microsecond pulse electric field (µsPEF). Significantly, the dynamic process of membrane repair during reversible electroporation is well demonstrated via ATP fluctuations monitored by the designed MMFNPs. Furthermore, molecular dynamics (MD) simulations are performed for accurate verification of electroporation-driven dynamic cargo entry via membrane nanopores. This work provides an avenue for effectively capturing transient fluctuations of membrane permeability under external stimuli, offering valuable guidance for developing efficient and safe electroporation-driven delivery strategies for clinical diagnosis and therapeutics.

8.
Anal Chem ; 95(41): 15276-15285, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37782295

ABSTRACT

Small extracellular vesicles (sEVs) have emerged as noninvasive biomarkers in liquid biopsy due to their significant function in pathology and physiology. However, the phenotypic heterogeneity of sEVs presents a significant challenge to their study and has significant implications for their applications in liquid biopsies. In this study, anodic aluminum oxide films with different pore sizes (AAO nanoarray) were introduced to enable size-based isolation and downstream proteomics profiling of sEV subpopulations. The adjustable pore size and abundant Al3+ on the framework of AAOs allowed size-dependent isolation of sEV subpopulations through nanoconfined effects and Lewis acid-base interaction between AAOs and sEVs. Benefiting from the strong concerted effect, the simple AAO nanoarray enabled specific isolation of three sEV subpopulations, termed "50", "90", and "150 nm" groups, from 10 µL of complex biological samples within 10 min with high capture efficiencies and purities. Moreover, the nanopores of AAOs also acted as nanoreactors for comprehensive proteomic profiling of the captured sEV subpopulations to reveal their heterogeneity. The AAO nanoarray was first investigated on sEVs from a cell culture medium, where sEV subpopulations could be clearly distinguished, and three traditional sEV-specific proteins (CD81, CD9, and FLOT1) could be identified by proteomic analysis. A total of 3946, 3951, and 3940 proteins were identified from 50, 90, and 150 nm sEV subpopulations, respectively, which is almost twice the number compared to those obtained from the conventional approach. The concept was further applied to complex real-case sample analysis from prostate cancer patients. Machine learning and gene ontology (GO) information analysis of the identified proteins indicate that different-sized sEV subpopulations contain unique protein cargos and have distinct cellular components and molecular functions. Further receiver operating characteristic curve (ROC) analysis of the top five differential proteins from the three sEV subpopulations demonstrated the high accuracy of the proposed approach toward prostate cancer diagnosis (AUC > 0.99). More importantly, several proteins involved in focal adhesion and antigen processing and presentation pathways were found to be upregulated in prostate cancer patients, which may serve as potential biomarkers of prostate cancer. These results suggest that the sEV subpopulation-based AAO nanoarray is of great value in facilitating the early diagnosis and prognosis of cancer and opens a new avenue for sEVs in liquid biopsy.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms , Male , Humans , Proteomics , Prognosis , Prostatic Neoplasms/diagnosis , Biomarkers
9.
J Cell Biochem ; 124(9): 1379-1390, 2023 09.
Article in English | MEDLINE | ID: mdl-37565526

ABSTRACT

Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins c-akt , Animals , Mice , Cell Differentiation/genetics , Cell Proliferation/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/metabolism , Muscle Development/genetics , Myoblasts/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
10.
J Med Virol ; 95(8): e29041, 2023 08.
Article in English | MEDLINE | ID: mdl-37621182

ABSTRACT

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Subject(s)
Mpox (monkeypox) , Vaccinia virus , Humans , Cell Movement , Disease Outbreaks , Epithelial Cells
11.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511159

ABSTRACT

Fgf21 has been identified as playing a regulatory role in muscle growth and function. Although the mechanisms through which endurance training regulates skeletal muscle have been widely studied, the contribution of Fgf21 remains poorly understood. Here, muscle size and function were measured, and markers of fiber type were evaluated using immunohistochemistry, immunoblots, or qPCR in endurance-exercise-trained wild-type and Fgf21 KO mice. We also investigated Fgf21-induced fiber conversion in C2C12 cells, which were incubated with lentivirus and/or pathway inhibitors. We found that endurance exercise training enhanced the Fgf21 levels of liver and GAS muscle and exercise capacity and decreased the distribution of skeletal muscle fiber size, and fast-twitch fibers were observed converting to slow-twitch fibers in the GAS muscle of mice. Fgf21 promoted the markers of fiber-type transition and eMyHC-positive myotubes by inhibiting the TGF-ß1 signaling axis and activating the p38 MAPK signaling pathway without apparent crosstalk. Our findings suggest that the transformation and function of skeletal muscle fiber types in response to endurance training could be mediated by Fgf21 and its downstream signaling pathways. Our results illuminate the mechanisms of Fgf21 in endurance-exercise-induced fiber-type conversion and suggest a potential use of Fgf21 in improving muscle health and combating fatigue.


Subject(s)
Muscle Fibers, Skeletal , Physical Conditioning, Animal , Physical Endurance , Transforming Growth Factor beta1 , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism
12.
Toxics ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37505520

ABSTRACT

In recent years, microplastics have been of great concern in environmental and health research. In field surgeries and laboratory investigations, research interests were focused on the retention of microplastics inside of animals by ingestion and the series of negative effects after that. However, such large plastic debris and filaments are hardly eaten by small animals, like zooplankton, planktonic larvae, etc. In this study, the surface contact between plastic filaments contaminated with polycyclic aromatic hydrocarbons (PAHs) and mussel pediveliger larvae has been investigated to figure out the effects of "non-digestive tract route of exposure" on subject animals. In a 1600 mL artificial seawater medium, high mortalities of mussel larvae were recorded after being exposed to two PAHs-contaminated (benzo[α]pyrene (BaP) and phenanthrene (Phe)) filaments for 5 days, 68.63% for BaP and 56.45% for Phe on average. We suggest that the surface contact was the dominant pathway to transfer PAHs from contaminated filaments to larvae and that the risk of contaminated plastic ropes transferring hydrophobic organic compounds (HOCs) to larvae in mussel aquaculture should be taken seriously.

13.
Front Microbiol ; 14: 1185960, 2023.
Article in English | MEDLINE | ID: mdl-37303799

ABSTRACT

Introduction: Viral diseases have always been intricate and persistent issues throughout the world and there is a lack of holistic discoveries regarding the molecular dysregulations of virus-host interactions. The temporal proteomics strategy can identify various differentially expressed proteins and offer collaborated interaction networks under pathological conditions. Method: Herein, temporal proteomics at various hours post infection of Vero cells were launched to uncover molecular alternations during vaccinia virus (VACV)-induced cell migration. Different stages of infection were included to differentiate gene ontologies and critical pathways at specific time points of infection via bioinformatics. Results: Bioinformatic results showed functional and distinct ontologies and pathways at different stages of virus infection. The enrichment of interaction networks and pathways verified the significances of the regulation of actin cytoskeleton and lamellipodia during VACV-induced fast cell motility. Discussion: The current results offer a systematic proteomic profiling of molecular dysregulations at different stages of VACV infection and potential biomedical targets for treating viral diseases.

14.
FEBS Open Bio ; 13(6): 1015-1026, 2023 06.
Article in English | MEDLINE | ID: mdl-37073893

ABSTRACT

Obesity is a common chronic metabolic disease that induces chronic systemic inflammation in the body, eventually leading to related complications such as insulin resistance (IR), type 2 diabetes mellitus, and metabolic syndromes such as cardiovascular disease. Exosomes transfer bioactive substances to neighboring or distal cells through autosomal, paracrine, or distant secretion, regulating the gene and protein expression levels of receptor cells. In this study, we investigated the effect of mouse bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) on high-fat diet obese mice and mature 3T3-L1 adipocyte models of IR. BMSC-Exo treatment of obese mice promoted their metabolic homeostasis, including reduction of obesity, inhibition of M1-type proinflammatory factor expression, and improvement of insulin sensitivity. In vitro analysis revealed that BMSC-Exos improved IR and lipid droplet accumulation in mature 3T3-L1 adipocytes treated with palmitate (PA). Mechanistically, BMSC-Exos cause increased glucose uptake and improved IR in high-fat chow-fed mice and PA-acting 3T3-L1 adipocytes by activating the phosphoinositide 3-kinases/protein kinase B (PI3K/AKT) signaling pathway and upregulating glucose transporter protein 4 (GLUT4) expression. This study offers a new perspective for the development of treatments for IR in obese and diabetic patients.


Subject(s)
Diabetes Mellitus, Type 2 , Exosomes , Insulin Resistance , Mesenchymal Stem Cells , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Exosomes/genetics , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Obese , Obesity/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
15.
Biodivers Data J ; 11: e96231, 2023.
Article in English | MEDLINE | ID: mdl-38327357

ABSTRACT

To improve the taxonomy and systematics of Porcellanidae within the evolution of Anomura, we describe the complete mitochondrial genomes (mitogenomes) sequence of Pisidiaserratifrons, which is 15,344 bp in size, contains the entire set of 37 genes and has an AT-rich region. Compared with the pancrustacean ground pattern, at least five gene clusters (or genes) are significantly different with the typical genes, involving eleven tRNA genes and four PCGs and the tandem duplication/random loss and recombination models were used to explain the observed large-scale gene re-arrangements. The phylogenetic results showed that all Porcellanidae species clustered together as a group with well nodal support. Most Anomura superfamilies were found to be monophyletic, except Paguroidea. Divergence time estimation implies that the age of Anomura is over 225 MYA, dating back to at least the late Triassic. Most of the extant superfamilies and families arose during the late Cretaceous to early Tertiary. In general, the results obtained in this study will contribute to a better understanding of gene re-arrangements in Porcellanidae mitogenomes and provide new insights into the phylogeny of Anomura.

16.
FEBS Open Bio ; 12(12): 2213-2226, 2022 12.
Article in English | MEDLINE | ID: mdl-36325691

ABSTRACT

When skeletal muscle is damaged, satellite cells (SCs) are activated to proliferate rapidly and fuse with the damaged muscle fibers to form new muscle fibers, thereby promoting muscle growth and remodeling and repair of trauma. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Therefore, we hypothesized that, when muscles are injured, myoblast-derived exosomes may regulate muscle repair and regeneration. Here, we investigated the underlying mechanism by applying C2C12-derived exosomes to injured mouse skeletal muscles. The expression levels of skeletal muscle regeneration factors paired box 7 and lipid-promoting factor peroxisome proliferator-activated receptor γ were upregulated, whereas the expression levels of fibrosis factors collagen-1 and α-smooth muscle actin decreased. The expression of proliferating cell nuclear antigen was elevated after applying C2C12-derived exosomes to SCs. Application of C2C12-derived exosomes to fibro-adipogenic progenitors resulted in an increase in peroxisome proliferator-activated receptor γ expression and adipogenesis capacity, whereas α-smooth muscle actin expression and fibrosis capacity decreased. Analysis of the transcriptome and proteome of SCs after treatment with exosomes showed the involvement of multiple biological processes, including proliferation and differentiation of SCs, muscle regeneration, skeletal muscle atrophy, and the inflammatory response after muscle injury. Hence, our data suggest that C2C12-derived exosomes can promote the regeneration of skeletal muscle fibers, accelerate the production of fat from damaged muscles, inhibit the fibrosis of damaged muscles, and accelerate injury repair, which is related to exosome-mediated regulation of the proliferation of SCs, differentiation of fibro-adipogenic progenitors, and modulation of SC mRNA expression and protein formation and decomposition.


Subject(s)
Exosomes , Mice , Humans , Animals , PPAR gamma/metabolism , Actins/metabolism , Myoblasts , Muscle, Skeletal/metabolism , Fibrosis
17.
Genes (Basel) ; 13(11)2022 10 25.
Article in English | MEDLINE | ID: mdl-36360180

ABSTRACT

Pilumnopeus makianus is a crab that belongs to Pilumnidae, Brachyura. Although many recent studies have focused on the phylogeny of Brachyura, the internal relationships in this clade are far from settled. In this study, the complete mitogenome of P. makianus was sequenced and annotated for the first time. The length of the mitogenome is 15,863 bp, and includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), and 2 ribosomal RNA genes (rRNA). The mitogenome exhibits a high AT content (72.26%), with a negative AT-skew (-0.01) and a GC-skew (-0.256). In the mitogenome of P. makianus, all the tRNA genes are folded into the typical cloverleaf secondary structure, except trnS1 (TCT). A comparison with the ancestors of Brachyura reveals that gene rearrangement occurred in P. makianus. In addition, phylogenetic analyses based on thirteen PCGs indicated that P. makianus, Pilumnus vespertilio, and Echinoecus nipponicus clustered into a well-supported clade that supports the monophyly of the family Pilumnidae. These findings enabled a better understanding of phylogenetic relationships within Brachyura.


Subject(s)
Brachyura , Genome, Mitochondrial , Animals , Phylogeny , Brachyura/genetics , Gene Rearrangement , RNA, Transfer/genetics
18.
ACS Appl Mater Interfaces ; 14(32): 36341-36352, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35916896

ABSTRACT

In light of the significance of exosomes in cancer diagnosis and treatment, it is important to understand the components and functions of exosomes. Herein, an all-in-one strategy has been proposed for comprehensive characterization of exosomal proteins based on nanoporous TiO2 clusters acting as both an extractor for exosome isolation and a nanoreactor for downstream molecular profiling. With the improved hydrophilicity and inherent properties of TiO2, exosomes can be captured by a versatile nanodevice through the specific binding and hydrophilicity interaction synergistically. The strong concerted effect between exosomes and nanodevices ensured high efficiency and specificity of exosome isolation with high recovery and low contaminations. Meanwhile, highly efficient downstream proteomic analysis of the purified exosomes was also enabled by the nanoporous TiO2 clusters. Benefiting from the porous structure of the nanodevice, the lysed exosomal proteins are highly concentrated in the nanopore to achieve high-efficiency in situ proteolytic digestion. Therefore, the unique features of the TiO2 clusters ensured that all the complex steps about isolation and analysis of exosomes were completed efficiently in one simple nanodevice. The concept was first proved with exosomes from cell culture medium, where a high number of identified total proteins and protein groups in exosomes were obtained. Taking advantage of these attractive merits, the first example of the integrated platform has been successfully applied to the analysis of exosomes in complex real-case samples. Not only 196 differential protein biomarker candidates were discovered, but also many more significant cellular components and functions related to gastric cancer were found. These results suggest that the nanoporous TiO2 cluster-based all-in-one strategy can serve as a simple, cost-effective, and integrated platform to facilitate comprehensive analysis of exosomes. Such an approach will provide a valuable tool for the study of exosome markers and their functions.


Subject(s)
Exosomes , Neoplasms , Cell Culture Techniques , Exosomes/chemistry , Humans , Neoplasms/metabolism , Proteins/analysis , Proteomics/methods
19.
Front Mol Biosci ; 9: 907148, 2022.
Article in English | MEDLINE | ID: mdl-35832736

ABSTRACT

In recent years, the studies of the role of microRNAs in adipogenesis and adipocyte development and the corresponding molecular mechanisms have received great attention. In this work, we investigated the function of miR-140 in the process of adipogenesis and the molecular pathways involved, and we found that adipogenic treatment promoted the miR-140-5p RNA level in preadipocytes. Over-expression of miR-140-5p in preadipocytes accelerated lipogenesis along with adipogenic differentiation by transcriptional modulation of adipogenesis-linked genes. Meanwhile, silencing endogenous miR-140-5p dampened adipogenesis. Platelet-derived growth factor receptor alpha (PDGFRα) was shown to be a miR-140-5p target gene. miR-140-5p over-expression in preadipocyte 3T3-L1 diminished PDGFRα expression, but silencing of miR-140-5p augmented it. In addition, over-expression of PDGFRα suppressed adipogenic differentiation and lipogenesis, while its knockdown enhanced these biological processes of preadipocyte 3T3-L1. Altogether, our current findings reveal that miR-140-5p induces lipogenesis and adipogenic differentiation in 3T3-L1 cells by targeting PDGFRα, therefore regulating adipogenesis. Our research provides molecular targets and a theoretical basis for the treatment of obesity-related metabolic diseases.

20.
Sci Rep ; 12(1): 2104, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136145

ABSTRACT

Complete mitochondrial genomes (mitogenomes) can provide useful information for phylogenetic relationships, gene rearrangement, and evolutionary traits. In this study, we determined the complete mitochondrial DNA sequence of the herbivorous crab Grapsus albolineatus. It is a typical metazoan mitochondrial genome. The total size is 15,583 bp, contains the entire set of 37 genes, and has an AT-rich region. Then, 23 of the 37 genes were encoded by the heavy (+) strand while 14 are encoded by the light (-) strand. Compared with the pan-crustacean ground pattern, two tRNA genes (tRNA-His and tRNA-Gln) were rearranged and the tandem duplication/random loss model was used to explain the observed gene rearrangements. The phylogenetic results showed that all Grapsidae crabs clustered together as a group. Furthermore, the monophyly of each family was well supported, with the exception of Menippidae. In general, the results obtained in this study will contribute to the better understanding of gene rearrangements in Grapsidae crab mitogenomes and provide new insights into the phylogeny of Brachyura.


Subject(s)
Brachyura/genetics , Genome, Mitochondrial , Phylogeny , Animals , Codon Usage , Gene Rearrangement , RNA, Ribosomal/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...