Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 16(4): 045008, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33793422

ABSTRACT

Periodontitis is a chronic inflammatory disease characterized by loss of attachment and destruction of the periodontium. Decellularized sheet, as an advanced tissue regeneration engineering biomaterial, has been researched and applied in many fields, but its effects on periodontal regeneration remain unclear. In this study, the biological properties of decellularized human periodontal ligament cell (dHPDLC) sheets were evaluated in vitro. Polycaprolactone/gelatin (PCL/GE) nanofibers were fabricated as a carrier to enhance the mechanical strength of the dHPDLC sheet. 15-deoxy-[Formula: see text]-prostaglandin J2 (15d-PGJ2) nanoparticles were added for anti-inflammation and regeneration improvement. For in vivo analysis, dHPDLC sheets combined with 15d-PGJ2 nanoparticles, with or without PCL/GE, were implanted into rat periodontal defects. The periodontal regeneration effects were identified by microcomputed tomography (micro-CT) and histological staining, and immunohistochemistry. The results revealed that DNA content was reduced by 96.6%. The hepatocyte growth factor, vascular endothelial growth factor, and basic fibroblast growth factor were preserved but reduced. The expressions or distribution of collagen I and fibronectin were similar in dHPDLC and nondecellularized cell sheets. The dHPDLC sheets maintained the intact structure of the extracellular matrix. It could be recellularized by allogeneic human periodontal stem ligament cells and retain osteoinductive potential. Newly formed bone, cementum, and PDL were observed in dHPDLC sheets combined with 15d-PGJ2 groups, with or without PCL/GE nanofibers, for four weeks post-operation in vivo. Bringing together all these points, this new construct of dHPDLC sheets can be a potential candidate for periodontal regeneration in an inflammatory environment of the oral cavity.


Subject(s)
Decellularized Extracellular Matrix , Nanoparticles/chemistry , Periodontal Ligament/cytology , Periodontium , Prostaglandin D2/analogs & derivatives , Animals , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Guided Tissue Regeneration, Periodontal , Male , Periodontium/cytology , Periodontium/drug effects , Prostaglandin D2/chemistry , Prostaglandin D2/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL