Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 12(17): 18306-18316, 2023 09.
Article in English | MEDLINE | ID: mdl-37609808

ABSTRACT

OBJECTIVE: This study aims to develop a risk prediction model for chemotherapy-induced nausea and vomiting (CINV) in cancer patients receiving highly emetogenic chemotherapy (HEC) and identify the variables that have the most significant impact on prediction. METHODS: Data from Tianjin Medical University General Hospital were collected and subjected to stepwise data preprocessing. Deep learning algorithms, including deep forest, and typical machine learning algorithms such as support vector machine (SVM), categorical boosting (CatBoost), random forest, decision tree, and neural network were used to develop the prediction model. After training the model and conducting hyperparameter optimization (HPO) through cross-validation in the training set, the performance was evaluated using the test set. Shapley additive explanations (SHAP), partial dependence plot (PDP), and Local Interpretable Model-Agnostic Explanations (LIME) techniques were employed to explain the optimal model. Model performance was assessed using AUC, F1 score, accuracy, specificity, sensitivity, and Brier score. RESULTS: The deep forest model exhibited good discrimination, outperforming typical machine learning models, with an AUC of 0.850 (95%CI, 0.780-0.919), an F1 score of 0.757, an accuracy of 0.852, a specificity of 0.863, a sensitivity of 0.784, and a Brier score of 0.082. The top five important features in the model were creatinine clearance (Ccr), age, gender, anticipatory nausea and vomiting, and antiemetic regimen. Among these, Ccr had the most significant predictive value. The risk of CINV decreased with increased Ccr and age, while it was higher in the presence of anticipatory nausea and vomiting, female gender, and non-standard antiemetic regimen. CONCLUSION: The deep forest model demonstrated good discrimination in predicting the risk of CINV in cancer patients prescribed HEC. Kidney function, as represented by Ccr, played a crucial role in the model's prediction. The clinical application of this predictive tool can help assess individual risks and improve patient care by proactively optimizing the use of antiemetics in cancer patients receiving HEC.


Subject(s)
Antiemetics , Antineoplastic Agents , Deep Learning , Neoplasms , Humans , Antiemetics/therapeutic use , Antineoplastic Agents/adverse effects , Vomiting/chemically induced , Vomiting/drug therapy , Nausea/chemically induced , Nausea/diagnosis , Nausea/drug therapy , Neoplasms/complications , Neoplasms/drug therapy
2.
Article in English | MEDLINE | ID: mdl-37307181

ABSTRACT

In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.

3.
Front Comput Neurosci ; 16: 1059565, 2022.
Article in English | MEDLINE | ID: mdl-36452007

ABSTRACT

Introduction: Analysis and prediction of seizures by processing the EEG signals could assist doctors in accurate diagnosis and improve the quality of the patient's life with epilepsy. Nowadays, seizure prediction models based on deep learning have become one of the most popular topics in seizure studies, and many models have been presented. However, the prediction results are strongly related to the various complicated pre-processing strategies of models, and cannot be directly applied to raw data in real-time applications. Moreover, due to the inherent deficiencies in single-frame models and the non-stationary nature of EEG signals, the generalization ability of the existing model frameworks is generally poor. Methods: Therefore, we proposed an end-to-end seizure prediction model in this paper, where we designed a multi-frame network for automatic feature extraction and classification. Instance and sequence-based frames are proposed in our approach, which can help us simultaneously extract features of different modes for further classification. Moreover, complicated pre-processing steps are not included in our model, and the novel frames can be directly applied to the raw data. It should be noted that the approaches proposed in the paper can be easily used as the general model which has been validated and compared with existing model frames. Results: The experimental results showed that the multi-frame network proposed in this paper was superior to the existing model frame in accuracy, sensitivity, specificity, F1-score, and AUC in the classification performance of EEG signals. Discussion: Our results provided a new research idea for this field. Researchers can further integrate the idea of the multi-frame network into the state-of-the-art single-frame seizure prediction models and then achieve better results.

4.
Front Public Health ; 10: 984750, 2022.
Article in English | MEDLINE | ID: mdl-36203663

ABSTRACT

Background: This study aimed to develop an artificial intelligence predictive model for predicting the probability of developing BM in CRC patients. Methods: From SEER database, 50,566 CRC patients were identified between January 2015 and December 2019 without missing data. SVM and LR models were trained and tested on the dataset. Accuracy, area under the curve (AUC), and IDI were used to evaluate and compare the models. Results: For bone metastases in the entire cohort, SVM model with poly as kernel function presents the best performance, whose accuracy is 0.908, recall is 0.838, and AUC is 0.926, outperforming LR model. The top three most important factors affecting the model's prediction of BM include extraosseous metastases (EM), CEA, and size. Conclusion: Our study developed an SVM model with poly as kernel function for predicting BM in CRC patients. SVM model could improve personalized clinical decision-making, help rationalize the bone metastasis screening process, and reduce the burden on healthcare systems and patients.


Subject(s)
Artificial Intelligence , Colorectal Neoplasms , Algorithms , Area Under Curve , Colorectal Neoplasms/diagnosis , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...