Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell Death Differ ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871948

ABSTRACT

Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.

2.
Biomacromolecules ; 25(2): 792-808, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38237562

ABSTRACT

For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/pharmacology , Apoptosis/genetics , Tumor Suppressor Protein p53/genetics
3.
Sci Rep ; 13(1): 22252, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097781

ABSTRACT

Lipid metabolism plays a key role in erectile dysfunction. Our purpose was to evaluate the influence of lipid-lowering drugs on erectile dysfunction employing a two-sample Mendelian randomization (MR) study. Genetic instruments were employed to represent the exposure of lipid-lowering drugs. Inverse variance-weighted MR (IVWMR) was employed to calculate the estimation of effects. IVW-MR analysis showed that the positive relationship between the expression of HMGCR and the risk of erectile dysfunction (odds ratio [OR] = 1.27, 95% confidence interval [CI] 1.03-1.57; p = 0.028). No significant relationship was detected between NPC1L1, PSK9 expression and erectile dysfunction. This MR study suggested that HMGCR inhibitors are a more desirable treatment modality for patients with ED.


Subject(s)
Erectile Dysfunction , Male , Humans , Erectile Dysfunction/genetics , Mendelian Randomization Analysis , Hypolipidemic Agents , Lipid Metabolism , Lipids , Genome-Wide Association Study , Polymorphism, Single Nucleotide
4.
BMC Plant Biol ; 23(1): 578, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981705

ABSTRACT

Gametophytic self-incompatibility (SI) is regulated by S-allele recognition; that is, pollen in a style with the same S-genotype will undergo programmed cell death and stop growing so that it is unable to complete double fertilization, ultimately resulting in the SI response. S-RNase is the female determinant of SI in pear (Pyrus). In the Pyrus genome, there are two different S-RNase alleles at the S-locus, which generate two different S-RNase products in the pistil. The extracted S-glycoprotein is actually a protein complex. In this study, artificial self-pollination was conducted at the bud stage to overcome SI in 'Huanghua' (S1S2) pear. Seven plants homozygous for S1-RNase and four homozygous for S2-RNase were selected from the selfed progeny of 'Huanghua' by S-gene molecular identification biotechnology. We investigated the function of single S-RNases isolated from the pistils of S-gene homozygous Pyrus germplasm. The pollen of 'Huanghua' could smoothly pass through the style of the S-gene homozygous germplasm and complete fertilization. S-RNases were extracted from flower styles of different genotypes and used to treat different types of pollen. The S-RNase from 'Huanghua' completely inhibited the growth of S1S2, S1S1, and S2S2 pollen, while the S-RNase from homozygous germplasm allowed some S1S2 pollen and different single genotypes of pollen to continue growing. These results further validate the core events of SI including cytoskeleton depolymerization and programmed cell death. By iTRAQ-based proteomic analysis of style proteins, a total of 13 S-RNase-related proteins were identified. In summary, we have created reliable S-RNase gene homozygous germplasm, which will play a crucial role in further research on SI in pear and in the development of the pear industry.


Subject(s)
Pyrus , Ribonucleases , Ribonucleases/genetics , Pyrus/genetics , Proteomics , Homozygote , Flowers
6.
Bioorg Chem ; 140: 106800, 2023 11.
Article in English | MEDLINE | ID: mdl-37643567

ABSTRACT

Lipid droplets (LDs) is a newly essential organelle, which participates in carious physiological and pathological processes. LDs are considered as potential markers for disease diagnosis. Specific imaging of LDs is useful to understand their basic biological function and to diagnose diseases. Here we designed and synthesized two fluorescent probes based on the low polarity and high viscosity in LDs. The terminal probe ZH-2 exhibits lipophilicity, NIR emission, viscosity sensitivity, and LDs specificity. The probe has been successfully used for visualizing LDs metabolism, discriminating between normal and cancerous cells, and diagnosing fatty liver disease.


Subject(s)
Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Fluorescent Dyes , Lipid Droplets , Lipid Metabolism
7.
Eur J Med Res ; 28(1): 236, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452355

ABSTRACT

BACKGROUND: Necroptosis has been reported to play a critical role in occurrence and progression of cancer. The dysregulation of long non-coding RNAs (lncRNAs) is associated with the progression and metastasis of clear cell renal cell carcinoma (CCRCC). However, research on necroptosis-related lncRNAs in the tumor heterogeneity and prognosis of CCRCC is not completely unclear. This study aimed to analysis the tumor heterogeneity among CCRCC subgroups and construct a CCRCC prognostic signature based on necroptosis-related lncRNAs. METHODS: Weighted gene co-expression network analysis (WGCNA) was performed to identify necroptosis-related lncRNAs. A preliminary classification of molecular subgroups was performed by non-negative matrix factorization (NMF) consensus clustering analysis. Comprehensive analyses, including fraction genome altered (FGA), tumor mutational burden (TMB), DNA methylation alterations, copy number variations (CNVs), and single nucleotide polymorphisms (SNPs), were performed to explore the potential factors for tumor heterogeneity among the three subgroups. Subsequently, we constructed a predictive signature by multivariate Cox regression. Nomogram, calibration curves, decision curve analysis (DCA), and time-dependent receiver-operating characteristics (ROC) were used to validate and evaluate the signature. Finally, immune correlation analyses, including immune-related signaling pathways, immune cell infiltration status and immune checkpoint gene expression level, were also performed. RESULTS: Seven necroptosis-related lncRNAs were screened out by WGCNA, and three subgroups were classified by NMF consensus clustering analysis. There were significant differences in survival prognosis, clinicopathological characteristics, enrichments of immune-related signaling pathway, degree of immune cell infiltration, and expression of immune checkpoint genes in the various subgroups. Most importantly, we found that 26 differentially expressed genes (DEGs) among the 3 subgroups were not affected by DNA methylation alterations, CNVs and SNPs. On the contrary, these DEGs were associated with the seven necroptosis-related lncRNAs. Subsequently, the identified RP11-133F8.2 and RP11-283G6.4 by multivariate Cox regression analysis were involved in the risk model, which could serve as an independent prognostic factor for CCRCC. Finally, qRT-PCR confirmed the differential expression of the two lncRNAs. CONCLUSIONS: These findings contributed to understanding the function of necroptosis-related lncRNAs in CCRCC and provided new insights of prognostic evaluation and optimal therapeutic strategy for CCRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , RNA, Long Noncoding/genetics , DNA Copy Number Variations/genetics , Necroptosis/genetics , Prognosis , Kidney Neoplasms/genetics
8.
BMC Gastroenterol ; 23(1): 110, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37020295

ABSTRACT

OBJECTIVE: Colon cancer (CC) is one of the most common cancers worldwide and has a poor prognosis. Surgery followed by adjuvant chemotherapy is the standard treatment strategy for stage III CC patients. Primary tumor location (PTL) is an important factor for the long-term survival of CC. However, the difference in the prognosis between the histological subtypes of mucinous adenocarcinoma (MAC) and nonspecific adenocarcinoma (AC) in stage III CC patients is unclear. The correlation of chemotherapy, PTL and histological subtype with the overall survival (OS) of stage III CC patients has not yet been explored. METHODS: Patients diagnosed with stage III CC from 2010 to 2016 in the Surveillance, Epidemiology, and End Results (SEER) database were retrieved. The clinicopathological features and OS were analyzed according to the chemotherapy, PTL and histological subtype. RESULTS: A total of 28,765 eligible stage III CC patients were enrolled in this study. The results showed that chemotherapy, left-sided CC (LCC) and AC were favorable prognostic factors for OS. Right-sided CC (RCC) had worse OS than LCC regardless of chemotherapy. MAC had worse OS than AC in the patients with chemotherapy, but the survival benefits disappeared in the patients without chemotherapy. Additionally, in LCC, MAC had worse OS than AC regardless of chemotherapy. However, in RCC, MAC had worse OS than AC in patients with chemotherapy but had similar OS to AC in patients without chemotherapy. In the AC group, RCC had worse OS than LCC regardless of chemotherapy. In the MAC group, RCC had comparable OS to LCC regardless of chemotherapy. Four subgroups, i.e., RCC/MAC, RCC/AC, LCC/MAC and LCC/AC, all showed benefits from chemotherapy. Among them, LCC/AC had the best OS, and RCC/MAC had the worst OS compared with the other three subgroups. CONCLUSION: The prognosis of MAC is worse than that of AC in stage III CC. LCC/AC has the best OS, while RCC/MAC has the worst OS but still benefits from chemotherapy. The impact of chemotherapy on survival is greater than that of histological subtype, but the impact of histological subtype on survival is similar to that of PTL.


Subject(s)
Adenocarcinoma , Carcinoma, Renal Cell , Colonic Neoplasms , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Neoplasm Staging , Colonic Neoplasms/pathology , Prognosis , Adenocarcinoma/pathology , Kidney Neoplasms/pathology
9.
Plant J ; 115(3): 642-661, 2023 08.
Article in English | MEDLINE | ID: mdl-37077034

ABSTRACT

Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.


Subject(s)
Citrus , Citrus/metabolism , Laser Capture Microdissection , Transcriptome , Seeds/metabolism , Fruit/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks
10.
J Pers Med ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36983664

ABSTRACT

BACKGROUND: Although significant progress has been made in immunotherapy for lung adenocarcinoma (LUAD), there is an urgent need to identify effective indicators to screen patients who are suitable for immunotherapy. Systematically investigating the cuproptosis-related genes (CRGs) in LUAD may provide new ideas for patients' immunotherapy stratification. METHOD: We comprehensively analyzed the landscape of 12 CRGs in a merged TCGA and GEO LUAD cohort. We investigated the associations between tumor microenvironment and immunophenotypes. We utilized a risk score to predict the prognosis and immunotherapy response for an individual patient. Additionally, we conducted CCK-8 experiments to evaluate the impact of DLGAP5 knockdown on A549 cell proliferation. RESULT: We utilized an integrative approach to analyze 12 CRGs and differentially expressed genes (DEGs) in LUAD samples, resulting in the identification of two distinct CRG clusters and two gene clusters. Based on these clusters, we generated immunophenotypes and observed that the inflamed phenotype had the most abundant immune infiltrations, while the desert phenotype showed the poorest immune infiltrations. We then developed a risk score model for individual patient prognosis and immunotherapy response prediction. Patients in the low-risk group had higher immune scores and ESTIMATE scores, indicating an active immune state with richer immune cell infiltrations and higher expression of immune checkpoint genes. Moreover, the low-risk group exhibited better immunotherapy response according to IPS, TIDE scores, and Imvigor210 cohort validation results. In addition, our in vitro wet experiments demonstrated that DLGAP5 knockdown could suppress the cell proliferation of A549. CONCLUSION: Novel cuproptosis molecular patterns reflected the distinct immunophenotypes in LUAD patients. The risk model might pave the way to stratify patients suitable for immunotherapy and predict immunotherapy response.

11.
Front Oncol ; 13: 1044327, 2023.
Article in English | MEDLINE | ID: mdl-36824127

ABSTRACT

Background: Several randomized controlled trials (RCTs) have confirmed the favorable clinical benefit of pembrolizumab in advanced non-small cell lung cancer (NSCLC). However, considering the strict inclusion and exclusion criteria in clinical research, there are certain differences between patients in the real-world, it is unclear whether the findings of clinical trials are fully representative of the treatment efficacy in patients who will eventually use it. Therefore, to further comprehensively assess the efficacy and safety of pembrolizumab in NSCLC, we conducted a systematic review and meta-analysis based on the latest RCTs and real-world studies (RWSs). Methods: We systematically searched PubMed, Embase, The Cochrane Library, The Web of Science, and clinical trials.gov as of December 2021. RCTs and RWSs of patients receiving pembrolizumab monotherapy or in combination with chemotherapy for advanced NSCLC were included. Results: The meta-analysis ultimately included 11 RCTs and 26 RWSs with a total of 10,695 patients. The primary outcomes of this study were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), serious adverse events (SAEs), the incidence of severe pneumonia reactions, and drug-related mortality. Direct meta-analysis results showed that in RCTs, pembrolizumab in combination with chemotherapy was superior to chemotherapy in terms of OS (HR=0.60, 95%CI:0.50-0.73), PFS (HR=0.47, 95%CI:0.38-0.58) and ORR (OR=3.22, 95%CI:2.57-4.03); pembrolizumab monotherapy was superior to chemotherapy in terms of OS (HR=0.73, 95%CI:0.66-0.80) and ORR (OR=1.90, 95%CI:1.17-3.09), but comparable to chemotherapy in terms of PFS (HR=0.83, 95%CI:0.66-1.04). The ORR values in retrospective single-arm studies were 45% (40%-51%). Conclusion: In RCTs, pembrolizumab monotherapy or in combination with chemotherapy is more effective and safer than chemotherapy for advanced NSCLC. In RWSs, ECOG PS 0-1 was shown to correlate with PFS and OS for patients with NSCLC.

12.
Sci Rep ; 13(1): 2455, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774446

ABSTRACT

Cuproptosis is a newly form of cell death. Cuproptosis related lncRNA in lung adenocarcinoma (LUAD) has also not been fully elucidated. In the present study, we aimed to construct a prognostic signature based on cuproptosis-related lncRNA in LUAD and investigate its association with immunotherapy response. The RNA-sequencing data, clinical information and simple nucleotide variation of LUAD patients were obtained from TCGA database. The LASSO Cox regression was used to construct a prognostic signature. The CIBERSORT, ESTIMATE and ssGSEA algorithms were applied to assess the association between risk score and TME. TIDE score was applied to reflect the efficiency of immunotherapy response. The influence of overexpression of lncRNA TMPO-AS1 on A549 cell was also assessed by in vitro experiments. The lncRNA prognostic signature included AL606834.1, AL138778.1, AP000302.1, AC007384.1, AL161431.1, TMPO-AS1 and KIAA1671-AS1. Low-risk group exhibited much higher immune score, stromal score and ESTIMATE score, but lower tumor purity compared with high-risk groups. Also, low-risk group was associated with a much higher score of immune cells and immune related function sets, indicating an immune activation state. Low-risk patients had relative higher TIDE score and lower TMB. External validation using IMvigor210 immunotherapy cohort demonstrated that low-risk group had a better prognosis and might more easily benefit from immunotherapy. Overexpression of lncRNA TMPO-AS1 promoted the proliferation, migration and invasion of A549 cell line. The novel cuproptosis-related lncRNA signature could predict the prognosis of LUAD patients, and helped clinicians stratify patients appropriate for immunotherapy and determine individual therapeutic strategies.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Immunotherapy , RNA, Long Noncoding , Humans , Computational Biology , Lung , Prognosis , RNA, Long Noncoding/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Copper
13.
Biomark Res ; 11(1): 17, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750911

ABSTRACT

The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.

14.
Life Sci ; 312: 121266, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36473542

ABSTRACT

AIMS: To explore the methylation status, function, and underlying mechanism of the imprinted gene Neuronatin (NNAT) in hepatocellular carcinoma (HCC) progression. MAIN METHODS: Immunohistochemistry (IHC) was performed to evaluate the expression of NNAT in HCC samples. Bisulfite genomic sequencing PCR (BSP) was applied to examine the methylation status of the NNAT promoter. In addition, colony formation, 5-Ethynyl-20-deoxyuridine (EdU) assays and subcutaneous xenograft nude models were used to explore the roles of NNAT in HCC cell proliferation. Furthermore, RNA-seq and phospho-specific protein microarray assays were conducted to illustrate the underlying mechanism by which NNAT regulates HCC progression. KEY FINDINGS: NNAT was obviously downregulated in HCC tissues, and its expression level was closely associated with tumor growth and patient prognosis. The downregulation of NNAT in HCC was induced by hypermethylation of CpG islands in the promoter region, and hypermethylation was correlated with overall survival of HCC. Moreover, the enforced expression of NNAT significantly inhibited HCC cell proliferation in vitro and in vivo. Transcriptome analysis showed that the alteration of NNAT expression was mainly related to dysregulation of the PI3K-Akt signaling pathway. Finally, phospho-specific antibody microarray detection further revealed that overexpressed NNAT can increase the phosphorylation levels of LKB1, Met, and elF4E and decrease the phosphorylation levels of PTEN, which are all involved in the PI3K-Akt signaling pathway. SIGNIFICANCE: Our research provides new insights into the epigenetic regulation of imprinted genes in tumorigenesis and implies that the imprinted gene NNAT may act as a prognostic biomarker and tumor suppressor in HCC.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Gene Silencing , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Nude , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Gene Silencing/physiology , Disease Models, Animal
15.
Can J Gastroenterol Hepatol ; 2022: 6799414, 2022.
Article in English | MEDLINE | ID: mdl-36397950

ABSTRACT

The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Adipokines/metabolism , Adipokines/therapeutic use , Adipose Tissue , Hepatocytes/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism
16.
Front Endocrinol (Lausanne) ; 13: 1007944, 2022.
Article in English | MEDLINE | ID: mdl-36267567

ABSTRACT

Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Adipokines , NF-kappa B , PPAR alpha , Diabetes Mellitus, Type 2/complications , AMP-Activated Protein Kinases , Liver Cirrhosis/complications , Cytokines
17.
Eur J Med Chem ; 243: 114796, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36198216

ABSTRACT

Cancer immunotherapy is a powerful weapon in the fight against cancers. Cyclic dinucleotides (CDNs) have demonstrated the great potential by evoking the immune system to fight cancers. There are still a lot of unmet needs for highly active CDNs in clinical applications due to low cell permeation and serum stability. Here we reported S-acylthioalkyl ester (SATE)-based prodrugs of deoxyribose cyclic dinucleotides (dCDNs) with three different types of internucleotide linkages (3',3':11a; 2',3':11b; 2',2':11c). The parent dCDNs could be efficiently released from SATE-dCDNs by cellular esterases. Compared to 2',3'-cGAMP and ADU-S100, 11a exhibited much higher potency of activating STING pathway and higher serum stability. In a CT26-Luc tumor-bearing animal model, 11a showed the efficient antitumor activity in eliminating the established tumor and induced significant increase of mRNA expression of IFN-ß and other related inflammatory cytokines. Hence, SATE-dCDN prodrugs demonstrated their benefits in promoting cell penetration, improving serum stability, and thus enhancing bioactivity, suggesting their potential application as immunotherapy in a variety of malignancies.


Subject(s)
Neoplasms , Prodrugs , Animals , Prodrugs/pharmacology , Deoxyribose , Esters/pharmacology , Immunotherapy , Immunologic Factors , Neoplasms/drug therapy
18.
Molecules ; 27(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36296536

ABSTRACT

Multiple proteins are involved in network regulation through the crosstalk of different signaling pathways in cancers. Here, we propose a novel strategy of genome therapy with branch-PCR-assembled gene nanovectors to perform network-based gene regulation at multiple levels for cancer therapy. To validate network-based multiplex-gene regulation for genome therapy, we chose to simultaneously target one tumor suppressor gene (TP53) and one oncogene (MYC) in two different signaling pathways. The results showed that, compared to gene nanovectors targeting single genes (NP-TP53 and NP-shMYC), branch-PCR-assembled gene nanovectors simultaneously expressing p53 proteins and MYC shRNA arrays (NP-TP53-shMYC) showed enhanced antitumor efficacy in both MDA-MB-231 cancer cells and an MDA-MB-231-tumor-bearing mouse model. These findings indicate the feasibility and effectiveness of genome therapy in cancer therapy.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Genes, myc , RNA, Small Interfering , Neoplasms/genetics , Polymerase Chain Reaction , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
19.
Chembiochem ; 23(21): e202200387, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36073901

ABSTRACT

Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with biocompatible size (84.7±11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN functions through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5 %±4.6 % when the transfection concentration of NP-PTEN was 4.0 µg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7 % and 63.9 %, respectively, compared with the PBS group on the 18th  day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggests the promising therapeutic potential of branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as an all-in-one gene nanovector for multiple gene-based cancer gene therapy.


Subject(s)
Lung Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Cell Proliferation , Apoptosis , Lung/metabolism , Polymerase Chain Reaction , Genes, Neoplasm , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/genetics
20.
Cell Death Discov ; 8(1): 338, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896522

ABSTRACT

Pyroptosis, a type of inflammatory programmed cell death, is triggered by caspase cleavage of gasdermin family proteins. Based on accumulating evidence, pyroptosis is closely associated with tumour development, but the molecular mechanism underlying pyroptosis activation and the signalling pathways regulated by pyroptosis remain unclear. In this review, we first briefly introduce the definition, morphological characteristics, and activation pathways of pyroptosis and the effect of pyroptosis on anticancer immunity. Then we review recent progress concerning the complex role of pyroptosis in various tumours. Importantly, we summarise various FDA-approved chemotherapy drugs or natural compounds that exerted antitumor properties by inducing pyroptosis of cancer cells. Moreover, we also focus on the current application of nanotechnology-induced pyroptosis in tumour therapy. In addition, some unsolved problems and potential future research directions are also raised.

SELECTION OF CITATIONS
SEARCH DETAIL
...