Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Immunol ; 385: 104688, 2023 03.
Article in English | MEDLINE | ID: mdl-36774675

ABSTRACT

The adoptive transfer of ex vivo generated myeloid-derived suppressor cells (MDSCs) may be a promising therapeutic strategy for preventing allograft rejection after solid organ transplantation. Currently, the precise role of immune-metabolic pathways in the differentiation and function of MDSCs is not fully understood. Hexokinase 2 (HK2) is an isoform of hexokinase and is a key enzyme involved in the increased aerobic glycolysis of different immune cells during their activation and function. Here, we demonstrate that the addition of HK2 inhibitor 3-Bromopyruvic acid (3-BrPA) into traditional MDSCs induction system in vitro significantly promoted MDSCs production and enhanced their immunosuppressive function. Treatment with 3-BrPA increased the expression of MDSC-related immunosuppressive molecules, such as iNOS, Arg1, and CXCR2. Moreover, the adoptive transfer of 3-BrPA-treated MDSCs significantly prolonged the survival time of mouse heart allografts. This study provides a novel strategy to solve the problems of harvesting enough autologous cells for MDSC production from sick patients, and producing functionally enhanced MDSCs for preventing graft rejection and inducing tolerance.


Subject(s)
Myeloid-Derived Suppressor Cells , Organ Transplantation , Mice , Animals , Hexokinase/metabolism , Immunosuppressive Agents/pharmacology , Cell Differentiation
2.
Front Plant Sci ; 14: 1320980, 2023.
Article in English | MEDLINE | ID: mdl-38259918

ABSTRACT

Botryosphaeria dothidea infects hundreds of woody plants and causes a severe economic loss to apple production. In this study, we characterized BdLM1, a protein from B. dothidea that contains one LysM domain. BdLM1 expression was dramatically induced at 6 h post-inoculation in wounded apple fruit, strongly increased at 7 d post-inoculation (dpi), and peaked at 20 dpi in intact shoots. The knockout mutants of BdLM1 had significantly reduced virulence on intact apple shoots (20%), wounded apple shoots (40%), and wounded apple fruit (40%). BdLM1 suppressed programmed cell death caused by the mouse protein BAX through Agrobacterium-mediated transient expression in Nicotiana benthamiana, reduced H2O2 accumulation and callose deposition, downregulated resistance gene expression, and promoted Phytophthora nicotianae infection in N. benthamiana. Moreover, BdLM1 inhibited the active oxygen burst induced by chitin and flg22, bound chitin, and protected fungal hyphae against degradation by hydrolytic enzymes. Taken together, our results indicate that BdLM1 is an essential LysM effector required for the full virulence of B. dothidea and that it inhibits plant immunity. Moreover, BdLM1 could inhibit chitin-triggered plant immunity through a dual role, i.e., binding chitin and protecting fungal hyphae against chitinase hydrolysis.

3.
J Cardiovasc Pharmacol ; 79(6): 914-924, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35266910

ABSTRACT

ABSTRACT: Cystic fibrosis transmembrane conductance regulator (CFTR) plays important roles in arterial functions and the fate of cells. To further understand its function in vascular remodeling, we examined whether CFTR directly regulates platelet-derived growth factor-BB (PDGF-BB)-stimulated vascular smooth muscle cells (VSMCs) proliferation and migration, as well as the balloon injury-induced neointimal formation. The CFTR adenoviral gene delivery was used to evaluate the effects of CFTR on neointimal formation in a rat model of carotid artery balloon injury. The roles of CFTR in PDGF-BB-stimulated VSMC proliferation and migration were detected by mitochondrial tetrazolium assay, wound healing assay, transwell chamber method, western blot, and qPCR. We found that CFTR expression was declined in injured rat carotid arteries, while adenoviral overexpression of CFTR in vivo attenuated neointimal formation in carotid arteries. CFTR overexpression inhibited PDGF-BB-induced VSMC proliferation and migration, whereas CFTR silencing caused the opposite results. Mechanistically, CFTR suppressed the phosphorylation of PDGF receptor ß, serum and glucocorticoid-inducible kinase 1, JNK, p38 and ERK induced by PDGF-BB, and the increased mRNA expression of matrix metalloproteinase-9 and MMP2 induced by PDGF-BB. In conclusion, our results indicated that CFTR may attenuate neointimal formation by suppressing PDGF-BB-induced activation of serum and glucocorticoid-inducible kinase 1 and the JNK/p38/ERK signaling pathway.


Subject(s)
Carotid Artery Injuries , Muscle, Smooth, Vascular , Animals , Becaplermin/pharmacology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Glucocorticoids/pharmacology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Rats , Rats, Sprague-Dawley
4.
Br J Sports Med ; 56(15): 854-861, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35288374

ABSTRACT

OBJECTIVE: The study aimed to assess the associations of physical activity (PA) trajectories across a 25-year span with coronary artery calcium (CAC) progression, and subsequent risk of cardiovascular disease (CVD) events. METHODS: We included 2497 participants from the Coronary Artery Disease Risk Development in Young Adults study who had computed tomography-assessment of CAC at baseline (year 15: 2000-2001) and follow-up (year 20 or 25) and at least three measures of PA from year 0 to year 25. Long-term PA trajectories were determined by latent class modelling using a validated questionnaire. RESULTS: Among the included participants, 1120 (44.9%) were men, 1418 (56.8%) were white, and the mean (SD) age was 40.4 (3.6) years. We identified three distinct PA trajectories based on PA average levels and change patterns: low (below PA guidelines, n=1332; 53.3%); moderate (meeting and slightly over PA guidelines, n=919; 36.8%) and high (about three times PA guidelines or more, n=246; 9.9%). During a mean (SD) follow-up of 8.9 (2.1) years, 640 (25.6%) participants had CAC progression. Participants in the high PA trajectory group had a higher risk of CAC progression than those in the low PA trajectory group after adjustment for traditional cardiovascular risk factors (HR 1.51; 95% CI 1.18 to 1.94). However, high PA trajectory was not associated with an increased risk of incident CVD events (HR 1.01; 95% CI 0.44 to 2.31) and the incidence of CVD events in participants with CAC progression was similar across all three PA trajectory groups (p=0.736). CONCLUSION: Long-term PA about three times the guidelines or more is independently associated with CAC progression; however, no additional risk of incident CVD events could be detected.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Adult , Calcium , Cardiovascular Diseases/epidemiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Exercise , Female , Humans , Male , Risk Assessment , Risk Factors , Young Adult
5.
Acta Pharmacol Sin ; 38(9): 1236-1247, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28552908

ABSTRACT

Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. We previously demonstrated that pretreatment with Xyl-B exerted neuroprotective effects and attenuated hypoxic-ischemic brain injury in neonatal mice. In the present study we investigated the neuroprotective effects of pre- and post-treatment with Xyl-B in adult mice using a transient middle cerebral artery occlusion (tMCAO) model, and explored the underlying mechanisms. Adult male C57 mice were subjected to tMCAO surgery. For the pre-treatment, Xyl-B was given via multiple injections (12.5, 25, and 50 mg·kg-1·d-1, ip) 48 h, 24 h and 30 min before ischemia. For the post-treatment, a single dose of Xyl-B (50 mg/kg, ip) was injected at 0, 1 or 2 h after the onset of ischemia. The regional cerebral perfusion was monitored using a laser-Doppler flowmeter. TTC staining was performed to determine the brain infarction volume. We found that both pre-treatment with Xyl-B (50 mg/kg) and post-treatment with Xyl-B (50 mg/kg) significantly reduced the infarct volume, but had no significant hemodynamic effects. Treatment with Xyl-B also significantly alleviated the neurological deficits in tMCAO mice. Furthermore, treatment with Xyl-B significantly attenuated ROS overproduction in brain tissues; increased the MnSOD protein levels, suppressed TLR4, NF-κB and iNOS protein levels; and downregulated the mRNA levels of proinflammatory cytokines, including IL-1ß, TNF-α, IL-6 and IFN-γ. Moreover, Xyl-B also protected blood-brain barrier integrity in tMCAO mice. In conclusion, Xyl-B administered within 2 h after the onset of stroke effectively protects against focal cerebral ischemia; the underlying mechanism may be related to suppressing the ROS/TLR4/NF-κB inflammatory signaling pathway.


Subject(s)
Cerebral Infarction/drug therapy , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Inflammation/drug therapy , Pyrans/pharmacology , Signal Transduction/drug effects , Stroke/drug therapy , Animals , Cerebral Infarction/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Pyrans/administration & dosage , Pyrans/chemistry , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...