Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 21: 100718, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455820

ABSTRACT

Neural tissue engineering techniques typically face a significant challenge, simulating complex natural vascular systems that hinder the clinical application of tissue-engineered nerve grafts (TENGs). Here, we report a subcutaneously pre-vascularized TENG consisting of a vascular endothelial growth factor-induced host vascular network, chitosan nerve conduit, and inserted silk fibroin fibers. Contrast agent perfusion, tissue clearing, microCT scan, and blood vessel 3D reconstruction were carried out continuously to prove whether the regenerated blood vessels were functional. Moreover, histological and electrophysiological evaluations were also applied to investigate the efficacy of repairing peripheral nerve defects with pre-vascularized TENG. Rapid vascular inosculation of TENG pre-vascularized blood vessels with the host vascular system was observed at 4 â€‹d bridging the 10 â€‹mm sciatic nerve defect in rats. Transplantation of pre-vascularized TENG in vivo suppressed proliferation of vascular endothelial cells (VECs) while promoting their migration within 14 â€‹d post bridging surgery. More importantly, the early vascularization of TENG drives axonal regrowth by facilitating bidirectional migration of Schwann cells (SCs) and the bands of Büngner formation. This pre-vascularized TENG increased remyelination, promoted recovery of electrophysiological function, and prevented atrophy of the target muscles when observed 12 weeks post neural transplantation. The neural tissue-engineered pre-vascularization technique provides a potential approach to discover an individualized TENG and explore the innovative neural regenerative process.

2.
Glia ; 71(7): 1755-1769, 2023 07.
Article in English | MEDLINE | ID: mdl-36971489

ABSTRACT

Prevascularization strategies have become a hot spot in tissue engineering. As one of the potential candidates for seed cells, skin precursor-derived Schwann cells (SKP-SCs) were endowed with a new role to more efficiently construct prevascularized tissue-engineered peripheral nerves. The silk fibroin scaffolds seeded with SKP-SCs were prevascularized through subcutaneously implantation, which was further assembled with the SKP-SC-containing chitosan conduit. SKP-SCs expressed pro-angiogenic factors in vitro and in vivo. SKP-SCs significantly accelerated the satisfied prevascularization in vivo of silk fibroin scaffolds compared with VEGF. Moreover, the NGF expression revealed that pregenerated blood vessels adapted to the nerve regeneration microenvironment through reeducation. The short-term nerve regeneration of SKP-SCs-prevascularization was obviously superior to that of non-prevascularization. At 12 weeks postinjury, both SKP-SCs-prevascularization and VEGF-prevascularization significantly improved nerve regeneration with a comparable degree. Our figures provide a new enlightenment for the optimization of prevascularization strategies and how to further utilize tissue engineering for better repair.


Subject(s)
Fibroins , Tissue Engineering , Vascular Endothelial Growth Factor A , Peripheral Nerves , Schwann Cells/physiology , Nerve Regeneration/physiology
3.
Bioeng Transl Med ; 7(3): e10361, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36176610

ABSTRACT

One of the bottlenecks of advanced study on tissue engineering in regenerative medicine is rapid and functional vascularization. For a deeper comprehension of vascularization, the exhaustive, dynamic, and three-dimensional depiction of perfused vascular network reconstruction during peripheral nerve regeneration was performed using Micro-CT scanning. The 10 mm defect of sciatic nerve in rat was bridged by the autologous or tissue engineered nerve. The blood vessel anastomosis between nerve stumps and autologous nerve accomplished at 4 days to 1 week after surgery, which was a sufficient basis for the mature vascular network re-establishment. The stronger ability for sprouting angiogenesis and vascular remodeling of autologous nerve compared with tissue engineered nerve was revealed. However, common phases of vascularization in peripheral nerve regeneration were painted: hypoxic initiation, sprouting angiogenesis, and remodeling and maturation. The effect of less-concerned vascular remodeling on nerve regeneration was further analyzed after nerve crush injury. The blockage of vascular remodeling in late stage by VEGF injection significantly inhibited axons and myelin sheaths regeneration, which attenuated the impulse conduction toward reinnervated muscles. It was illustrated that a large amount of immature blood vessels rather than necessary vascular remodeling elevated local inflammation level in nerve regeneration microenvironment. The figures inspired us to understand the close connections between vascularization and peripheral nerve regeneration from a broader dimension to achieve better constructions, regulations and repair effects of tissue engineered nerves in clinic.

4.
Exp Neurol ; 352: 114020, 2022 06.
Article in English | MEDLINE | ID: mdl-35196503

ABSTRACT

Matrix metalloproteinases (MMPs) are important contributing factors of tissue remodeling and wound healing. MMP9, a predominant soluble MMP, has been discovered as one of the most up-regulated genes in peripheral nerves after nerve injury, implying the potential regulatory roles of MMP9 during peripheral nerve regeneration. Considering that Schwann cell is a main cell population in peripheral nerves and MMP9 is secreted by Schwann cells, here, we investigated the biological functions of MMP9 on Schwann cell phenotype modulation. MMP9 gene knockdown or MMP9 recombinant protein exposure significantly hinders or elevates the migration ability of cultured Schwann cells, respectively. Direct application of MMP9 recombinant protein to sciatic nerve injured rats promotes Schwann cell migration, blood vessel formation, axon elongation, and myelin wrapping. Genetic exploration of MMP9-induced changes indicates that MMP9 regulates the extracellular region as well as the intracellular metabolism of Schwann cells. Our present study illuminates the importance of elevated MMP9 after nerve injury from the functional aspect and enhances our comprehension of the mechanisms underlying peripheral nerve regeneration.


Subject(s)
Matrix Metalloproteinase 9 , Peripheral Nerve Injuries , Animals , Cell Movement/genetics , Matrix Metalloproteinase 9/genetics , Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism , Rats , Recombinant Proteins , Schwann Cells/metabolism , Sciatic Nerve/injuries
5.
Mater Today Bio ; 12: 100158, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34841240

ABSTRACT

Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment.

6.
Ann Transl Med ; 8(16): 988, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32953788

ABSTRACT

BACKGROUND: Peripheral nerves are able to regenerate spontaneously after injury. An increasing number of studies have investigated the mechanism of peripheral nerve regeneration and attempted to find potential therapeutic targets. The various bioinformatics analysis tools available, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) networks can effectively screen the crucial targets of neuroregeneration. METHODS: GSEA and PPI networks were constructed through ingenuity pathway analysis and sequential gene expression validation ex vitro to investigate the molecular processes at 1, 4, 7, and 14 days following sciatic nerve transection in rats. RESULTS: Immune response and the activation of related canonical pathways were classified as crucial biological events. Additionally, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), neuregulin 1 (NRG1), nuclear factor of activated T cells 2 (NFATC2), midline 1 (MID1), GLI family zinc finger 2 (GLI2), and ventral anterior homeobox 1 (VAX1), which were jointly involved in both immune response and axonal regeneration, were screened and their mRNA and protein expressions following nerve injury were validated. Among them, the expression of VAX1 continuously increased following nerve injury, and it was considered to be a potential therapeutic target. CONCLUSIONS: The combined use of GSEA and PPI networks serves as a valuable way to identify potential therapeutic targets for neuroregeneration.

7.
Research (Wash D C) ; 2020: 2603048, 2020.
Article in English | MEDLINE | ID: mdl-32851386

ABSTRACT

Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.

8.
Neural Regen Res ; 15(11): 2116-2122, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32394970

ABSTRACT

Previous research revealed the positive activity of matrix metalloproteinase 7 (MMP7) on migration and myelin regeneration of Schwann cells (SCs). However, understanding of the molecular changes and biological activities induced by increased amounts of MMP7 in SCs remains limited. To better understand the underlying molecular events, primary SCs were isolated from the sciatic nerve stump of newborn rats and cultured with 10 nM human MMP7 for 24 hours. The results of genetic testing were analyzed at a relatively relaxed threshold value (fold change ≥ 1.5 and P-value < 0.05). Upon MMP7 exposure, 149 genes were found to be upregulated in SCs, whereas 133 genes were downregulated. Gene Ontology analysis suggested that many differentially expressed molecules were related to cellular processes, single-organism processes, and metabolic processes. Kyoto Enrichment of Genes and Genomes pathway analysis further indicated the critical involvement of cell signaling and metabolism in MMP7-induced molecular regulation of SCs. Results of Ingenuity Pathway Analysis (IPA) also revealed that MMP7 regulates biological processes, molecular functions, cellular components, diseases and functions, biosynthesis, material metabolism, cell movement, and axon guidance. The outcomes of further analysis will deepen our comprehension of MMP7-induced biological changes in SCs. This study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20190225-004) on February 27, 2019.

SELECTION OF CITATIONS
SEARCH DETAIL
...