Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurg Rev ; 45(4): 2709-2715, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35391607

ABSTRACT

Trigeminal neuralgia (TN) due to vertebrobasilar dolichoectasia (VBD) is a rare disease that can be challenging to treat. The objectives of this study are to investigate the characteristics of patients with TN due to VBD and to analyze the efficacy of microvascular decompression (MVD) by the interposition method for treatment of the condition. From 2010 until 2020, the data of 30 patients with TN due to VBD who were treated with MVD by the interposition method were analyzed retrospectively. The characteristics of the patients were compared with those of patients with non-VBD TN (n = 815). Kaplan-Meier survival analysis was performed to determine pain-free survival. The 30 patients (21 males, 9 females; mean age, 63.03 years) accounted for 3.55% of all patients with TN during the study period. In 30 patients, the offending vessel was the basilar artery (BA) in 1 patient, the vertebral artery (VA) in 6 patients, the VA plus the superior cerebellar artery (SCA) in 6 patients, the VA plus the anterior inferior cerebellar artery (AICA) in 12 patients, and the VA + SCA + AICA in 5 patients. Compared to non-VBD TN patients, those with TN due to VBD were significantly more likely to be male, to have TN of the left side, and to have hypertension (all P < 0.001). Mean age at surgery (P = 0.057) and symptom duration (P = 0.308) were comparable between the two groups. All 30 patients had immediate relief of facial pain after MVD and could stop medication. There were no postoperative complications. Over mean follow-up of 76.67 months, 3 patients had recurrence. The mean duration of pain-free survival was 70.77 months. In conclusions, TN due to VBD appears to be more likely in males, in those with hypertension, and to involve the left side. The interposition method performed by experienced and skilled neurosurgeons is a safe and effective treatment for TN due to VBD. Further studies are needed to analyze the associated long-term results and the pain recurrence rate among this special population.


Subject(s)
Hypertension , Microvascular Decompression Surgery , Trigeminal Neuralgia , Vertebrobasilar Insufficiency , Female , Humans , Hypertension/complications , Male , Microvascular Decompression Surgery/methods , Middle Aged , Retrospective Studies , Treatment Outcome , Trigeminal Neuralgia/etiology , Trigeminal Neuralgia/surgery , Vertebrobasilar Insufficiency/complications , Vertebrobasilar Insufficiency/surgery
2.
Pharmacol Ther ; 172: 127-138, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27919796

ABSTRACT

Tumors are comprised of highly heterogeneous populations of cells, of which only a small subset of stem-like cells possess the ability to regenerate tumors in vivo. These rare cancer stem cells (CSCs) have been regarded as the "bad seeds" accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. CSC-targeted therapy seems to be a better avenue for radical cure of cancer. Deubiquitinases (DUBs), specifically disassembling ubiquitin chains, have been demonstrated to play an important role in rigidly maintaining the balance between ubiquitination and deubiquitination for protein quality control and homeostasis in normal circumstances. Dysfunction or deregulation of DUBs always leads to a series of disorders, even malignant transformation. Despite the accumulative evidence that DUB inhibitors in cancer remedy mainly target the tumor bulk, side effects like toxicity and resistance are still hard nuts to crack. In this article, we review the concept of ubiquitin proteasome system (UPS) and hallmarks of CSCs related to tumor obstinacy. We primarily summarize the CSC-related factors and signaling pathways and focus on the function of DUBs on biological traits of CSCs. We also illustrate the opportunities and challenges for the application of DUB inhibitors in the CSC-targeted therapy. Finally, we discuss the complexity of cancer stem cell hierarchy complexity and argue that a combination therapy for both CSCs and non-CSCs should be a desirable option.


Subject(s)
Antineoplastic Agents/pharmacology , Deubiquitinating Enzymes/metabolism , Neoplasms/drug therapy , Animals , Antineoplastic Agents/adverse effects , Deubiquitinating Enzymes/antagonists & inhibitors , Drug Resistance, Neoplasm , Humans , Molecular Targeted Therapy , Neoplasms/enzymology , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects
3.
Neurol Res ; 34(10): 944-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23006818

ABSTRACT

BACKGROUND: It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). METHODS: Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. RESULTS: Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. CONCLUSIONS: In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.


Subject(s)
Hyperbaric Oxygenation/methods , Ischemic Preconditioning/methods , Recovery of Function/physiology , Spinal Cord Injuries/therapy , Animals , Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory/physiology , Female , Random Allocation , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
4.
J Cell Biochem ; 113(3): 1005-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22065605

ABSTRACT

Human umbilical cord mesenchymal stem cells (hUC-MSCs) can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticles, which produces low signal intensity on magnetic resonance imaging (MRI) in vitro. This study was to evaluate the feasibility of in vivo tracking for hUC-MSCs labeled by SPIO with noninvasive MRI. SPIO was added to cultures at concentrations equivalent to 0, 7, 14, 28, and 56 µg Fe/ml (diluted with DMEM/F12) and incubated for 16 h. Prussian Blue staining was used to determinate the labeling efficiency. Rats were randomly divided into three groups, control group, hUC-MSCs group, and SPIO-labeled hUC-MSCs group. All groups were subjected to spinal cord injury (SCI) by weight drop device. Rats were examined for neurological function. In vivo MRI was used to track SPIO-labeled hUC-MSCs transplanted in rats spinal cord. Survival and migration of hUC-MSCs were also explored using immunofluorescence. Significant improvements in locomotion were observed in the hUC-MSCs groups. There was statistical significance compared with control group. In vivo MRI 1 and 3 weeks after injection showed a large reduction in signal intensity in the region transplanted with SPIO-labeled hUC-MSCs. The images from unlabeled hUC-MSCs showed a smaller reduction in signal intensity. Transplanted hUC-MSCs engrafted within the injured rats spinal cord and survived for at least 8 weeks. In conclusion, hUC-MSCs can survive and migrate in the host spinal cord after transplantation, which promote functional recovery after SCI. Noninvasive imaging of transplanted SPIO-labeled hUC-MSCs is feasible.


Subject(s)
Cell Tracking/methods , Magnetic Resonance Imaging , Magnetite Nanoparticles , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Cell Survival , Cells, Cultured , Female , Humans , Mesenchymal Stem Cell Transplantation , Motor Activity , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy
SELECTION OF CITATIONS
SEARCH DETAIL