Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Sci Rep ; 14(1): 10311, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705920

ABSTRACT

Diabetic individuals with diabetic cardiomyopathy (DbCM) present with abnormal myocardial structure and function. DbCM cannot be accurately diagnosed due to the lack of suitable diagnostic biomarkers. In this study, 171 eligible participants were divided into a healthy control (HC), type 2 diabetes mellitus (T2DM) patients without DbCM (T2DM), or DbCM group. Serum fibrinogen-like protein 1 (FGL-1) and other biochemical parameters were determined for all participants. Serum FGL-1 levels were significantly higher in patients with DbCM compared with those in the T2DM group and HCs. Serum FGL-1 levels were negatively correlated with left ventricular fractional shortening and left ventricular ejection fraction (LVEF) and positively correlated with left ventricular mass index in patients with DbCM after adjusting for age, sex and body mass index. Interaction of serum FGL-1 and triglyceride levels on LVEF was noted in patients with DbCM. A composite marker including serum FGL-1 and triglycerides could differentiate patients with DbCM from those with T2DM and HCs with an area under the curve of 0.773 and 0.789, respectively. Composite marker levels were negatively correlated with N-terminal B-type natriuretic peptide levels in patients with DbCM. Circulating FGL-1 may therefore be a valuable index reflecting cardiac functions in DbCM and to diagnose DbCM.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Fibrinogen , Humans , Male , Female , Fibrinogen/metabolism , Fibrinogen/analysis , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/diagnosis , Biomarkers/blood , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Aged , Ventricular Function, Left , Case-Control Studies , Stroke Volume , Triglycerides/blood
3.
Neuroradiology ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625617

ABSTRACT

PURPOSE: The first-pass effect (FPE), defined as complete revascularization after a single thrombectomy pass in large vessel occlusion, is a predictor of good prognosis in patients with acute ischemic stroke (AIS) receiving mechanical thrombectomy (MT). We aimed to evaluate obesity-related indicators if possible be predictors of FPE. METHODS: We consecutively enrolled patients with AIS who were treated with MT between January 2019 and December 2021 at our institution. Baseline characteristics, procedure-related data, and laboratory test results were retrospectively analyzed. A multivariable logistic regression analysis was performed to evaluate the independent predictors of FPE. RESULTS: A total of 151 patients were included in this study, of whom 47 (31.1%) had FPE. After adjusting for confounding factors, the independent predictors of achieving FPE were low levels of body mass index (BMI) (OR 0.85, 95% CI 0.748 to 0.971), non-intracranial atherosclerotic stenosis (OR 4.038, 95% CI 1.46 to 11.14), and non-internal carotid artery occlusion (OR 13.14, 95% CI 2.394 to 72.11). Patients with lower total cholesterol (TC) (< 3.11 mmol/L) were more likely to develop FPE than those with higher TC (≥ 4.63 mmol/L) (OR 4.280; 95% CI 1.24 to 14.74) CONCLUSION: Lower BMI, non-intracranial atherosclerotic stenosis, non-internal carotid artery occlusion, and lower TC levels were independently associated with increased rates of FPE in patients with AIS who received MT therapy. FPE was correlated with better clinical outcomes after MT.

4.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Male , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Signal Transduction , Sterol Esterase/metabolism , Sterol Esterase/genetics , Ubiquitination , Vasodilation/drug effects
5.
Phytomedicine ; 123: 155175, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951150

ABSTRACT

BACKGROUND: Sepsis-related cardiac dysfunction is believed to be a primary cause of high morbidity and mortality. Metabolic reprogramming is closely linked to NLRP3 inflammasome activation and dysregulated glycolysis in activated macrophages, leading to inflammatory responses in septic cardiomyopathy. Succinate dehydrogenase (SDH) and succinate play critical roles in the progression of metabolic reprogramming in macrophages. Inhibition of SDH may be postulated as an effective strategy to attenuate macrophage activation and sepsis-induced cardiac injury. PURPOSE: This investigation was designed to examine the role of potential compounds that target SDH in septic cardiomyopathy and the underlying mechanisms involved. METHODS/RESULTS: From a small molecule pool containing about 179 phenolic compounds, we found that chicoric acid (CA) had the strongest ability to inhibit SDH activity in macrophages. Lipopolysaccharide (LPS) exposure stimulated SDH activity, succinate accumulation and superoxide anion production, promoted mitochondrial dysfunction, and induced the expression of hypoxia-inducible factor-1α (HIF-1α) in macrophages, while CA ameliorated these changes. CA pretreatment reduced glycolysis by elevating the NAD+/NADH ratio in activated macrophages. In addition, CA promoted the dissociation of K(lysine) acetyltransferase 2A (KAT2A) from α-tubulin, and thus reducing α-tubulin acetylation, a critical event in the assembly and activation of NLRP3 inflammasome. Overexpression of KAT2A neutralized the effects of CA, indicating that CA inactivated NLRP3 inflammasome in a specific manner that depended on KAT2A inhibition. Importantly, CA protected the heart against endotoxin insult and improved sepsis-induced cardiac mitochondrial structure and function disruption. Collectively, CA downregulated HIF-1α expression via SDH inactivation and glycolysis downregulation in macrophages, leading to NLRP3 inflammasome inactivation and the improvement of sepsis-induced myocardial injury. CONCLUSION: These results highlight the therapeutic role of CA in the resolution of sepsis-induced cardiac inflammation.


Subject(s)
Caffeic Acids , Cardiomyopathies , Sepsis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Tubulin/metabolism , Metabolic Reprogramming , Macrophages/metabolism , Succinates/adverse effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Sepsis/complications , Sepsis/drug therapy , Succinic Acid/adverse effects , Lipopolysaccharides/adverse effects
6.
Clin Cancer Res ; 30(5): 1038-1053, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38127282

ABSTRACT

PURPOSE: Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss. Although genomic studies have uncovered key driver events promoting tumor progression, the transcriptional changes preceding malignant transformation remain poorly defined. EXPERIMENTAL DESIGN: Here we resolve gene-expression profiles in PNST across the neurofibroma-to-MPNST continuum in NF1 patients and mouse models, revealing early molecular features associated with neurofibroma evolution and transformation. RESULTS: Our findings demonstrate that ANF exhibit enhanced signatures of antigen presentation and immune response, which are suppressed as malignant transformation ensues. MPNST further displayed deregulated survival and mitotic fidelity pathways, and targeting key mediators of these pathways, CENPF and BIRC5, disrupted the growth and viability of human MPNST cell lines and primary murine Nf1-Cdkn2a-mutant Schwann cell precursors. Finally, neurofibromas contiguous with MPNST manifested distinct alterations in core oncogenic and immune surveillance programs, suggesting that early molecular events driving disease progression may precede histopathologic evidence of malignancy. CONCLUSIONS: If validated prospectively in future studies, these signatures may serve as molecular diagnostic tools to augment conventional histopathologic diagnosis by identifying neurofibromas at high risk of undergoing malignant transformation, facilitating risk-adapted care.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma , Neurofibromatosis 1 , Neurofibrosarcoma , Animals , Humans , Mice , Gene Expression Profiling , Nerve Sheath Neoplasms/genetics , Neurofibroma/genetics , Neurofibromatosis 1/genetics , Neurofibrosarcoma/genetics
7.
Cell Mol Biol Lett ; 28(1): 93, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993768

ABSTRACT

BACKGROUND: Periostin is an extracellular matrix protein that plays a critical role in cell fate determination and tissue remodeling, but the underlying role and mechanism of periostin in diabetic cardiomyopathy (DCM) are far from clear. Thus, we aimed to clarify the mechanistic participation of periostin in DCM. METHODS: The expression of periostin was examined in DCM patients, diabetic mice and high glucose (HG)-exposed cardiac fibroblasts (CF). Gain- and loss-of-function experiments assessed the potential role of periostin in DCM pathogenesis. RNA sequencing was used to investigate the underlying mechanisms of periostin in DCM. RESULTS: A mouse cytokine antibody array showed that the protein expression of periostin was most significantly upregulated in diabetic mouse heart, and this increase was also observed in patients with DCM or HG-incubated CF. Periostin-deficient mice were protected from diabetes-induced cardiac dysfunction and myocardial damage, while overexpression of periostin held the opposite effects. Hyperglycemia stimulated the expression of periostin in a TGF-ß/Smad-dependent manner. RNA sequencing results showed that periostin upregulated the expression of nucleosome assembly protein 1-like 2 (NAP1L2) which recruited SIRT3 to deacetylate H3K27ac on the promoters of the branched-chain amino acid (BCAA) catabolism-related enzymes BCAT2 and PP2Cm, resulting in BCAA catabolism impairment. Additionally, CF-derived periostin induced hypertrophy, oxidative injury and inflammation in primary cardiomyocytes. Finally, we identified that glucosyringic acid (GA) specifically targeted and inhibited periostin to ameliorate DCM. CONCLUSION: Overall, manipulating periostin expression may function as a promising strategy in the treatment of DCM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Sirtuin 3 , Humans , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Sirtuin 3/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Myocytes, Cardiac/metabolism , Amino Acids, Branched-Chain/metabolism , Amino Acids, Branched-Chain/pharmacology , Fibroblasts/metabolism
8.
Ann Clin Transl Neurol ; 10(10): 1714-1724, 2023 10.
Article in English | MEDLINE | ID: mdl-37533211

ABSTRACT

OBJECTIVE: We aimed to investigate the association of lipid parameters with parenchymal hemorrhage (PH) and early neurological improvement (ENI) after mechanical thrombectomy (MT) in stroke patients. METHODS: We retrospectively analyzed consecutive patients who underwent MT between January 2019 and February 2022 at a tertiary stroke center. PH was diagnosed and classified as PH-1 and PH-2 according to the European Cooperative Acute Stroke Study definition. ENI was defined as a decrease in the National Institutes of Health Stroke Scale (NIHSS) score by ≥8 or an NIHSS score of ≤1 at 24 h after MT. RESULTS: Among 155 patients, PH occurred in 41 (26.5%) patients, and 34 (21.9%) patients achieved ENI. In multivariate analysis, lower triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) value (OR = 0.51; 95% CI 0.30-0.89; p = 0.017) and higher HDL-C level (OR = 5.83; 95% CI 1.26-26.99; p = 0.024) were independently associated with PH. The combination of TG <0.77 mmol/L and HDL-C ≥ 0.85 mmol/L was the strongest predictor of PH (OR = 10.73; 95% CI 2.89-39.87; p < 0.001). A low HDL-C level was an independent predictor of ENI (OR 0.13; 95% CI 0.02-0.95; p = 0.045), and PH partially accounts for the failure of ENI in patients with higher HDL-C levels (estimate: -0.05; 95% CI: -0.11 to -0.01; p = 0.016). INTERPRETATION: The combination of lower TG level and higher HDL-C level can predict PH after MT. Postprocedural PH partially accounts for the failure of ENI in patients with higher HDL-C levels. Further studies into the pathophysiological mechanisms underlying this observation are of interest.


Subject(s)
Brain Ischemia , Stroke , Humans , Brain Ischemia/diagnosis , Retrospective Studies , Treatment Outcome , Thrombectomy/adverse effects , Lipids , Hemorrhage
9.
Clin Cancer Res ; 29(17): 3438-3456, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37406085

ABSTRACT

PURPOSE: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS: Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS: These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Humans , Mice , Animals , Neurofibroma, Plexiform/etiology , Neurofibroma, Plexiform/genetics , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/genetics , MAP Kinase Signaling System , Proteomics , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Neurofibroma/complications , Cyclin-Dependent Kinase 4/genetics
10.
Am J Physiol Cell Physiol ; 324(4): C856-C877, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36878842

ABSTRACT

Hydrogen sulfide (H2S) is previously described as a potentially lethal toxic gas. However, this gasotransmitter is also endogenously generated by the actions of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in mammalian systems, thus belonging to the family of gasotransmitters after nitric oxide (NO) and carbon monoxide (CO). The physiological or pathological significance of H2S has been extensively expanded for decades. Growing evidence has revealed that H2S exerts cytoprotective functions in the cardiovascular, nervous, and gastrointestinal systems by modulating numerous signaling pathways. With the continuous advancement of microarray and next-generation sequencing technologies, noncoding RNAs (ncRNAs) have gained recognition as key players in human health and diseases due to their considerable potential as predictive biomarkers and therapeutic targets. Coincidentally, H2S and ncRNAs are not independent regulators but interact with each other during the development and progression of human diseases. Specifically, ncRNAs might serve as downstream mediators of H2S or act on H2S-generating enzymes to govern endogenous H2S production. The purpose of this review is to summarize the interactive regulatory roles of H2S and ncRNAs in the initiation and development of various diseases and explore their potential health and therapeutic benefits. This review will also highlight the importance of cross talk between H2S and ncRNAs in disease therapy.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Animals , Humans , Hydrogen Sulfide/metabolism , Cystathionine , Signal Transduction , Nitric Oxide , Cystathionine gamma-Lyase , Mammals/metabolism
11.
Gene Expr Patterns ; 48: 119308, 2023 06.
Article in English | MEDLINE | ID: mdl-36889372

ABSTRACT

OBJECTIVE: Angiogenesis is a key process of repairing tissue damage, and it is regulated by the delicate balance between anti-angiogenesis factors. In the present study, we investigate whether transcription factor cellular promoter 2 (TFCP2) is required for upstream binding protein 1 (UBP1)-mediated angiogenesis. METHODS: Levels of UBP1 and TFCP2 in human umbilical vein endothelial cells (HUVECs) are detected by quantitative polymerase chain reaction (q-PCR) and Western blotting (WB). Effects of UBP1 on angiogenesis and migration are detected by tube-like network formation on matrigel assay and scratch assay. The interaction between UBP1 and TFCP2 is predicted and verified by STRING and Co-immunoprecipitation (Co-IP). RESULTS: Firstly, the UBP1 expression level was up-regulated in the stimuli of vascular endothelial growth factor (VEGF) in HUVECs, and the knockdown of UBP1 inhibited angiogenesis and migration of HUVECs. Then, UBP1 interacted with TFCP2. Besides, the TFCP2 expression level was up-regulated in VEGF-stimulated HUVECs. Furthermore, knockdown of TFCP2 inhibited angiogenesis and migration in VEGF-stimulated HUVECs, and down-regulation of UBP1 enhanced the inhibition. CONCLUSION: TFCP2 also plays a key role in UBP1 mediated angiogenesis of HUVECs stimulated by VEGF. These findings will provide a new theoretical basis for the treatment of angiogenic diseases.


Subject(s)
Transcription Factors , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Transcription Factors/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Cell Movement , Neovascularization, Physiologic , Cell Proliferation , DNA-Binding Proteins/metabolism
12.
Neurosci Bull ; 39(9): 1426-1438, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36995569

ABSTRACT

Major depressive disorder (MDD) is a highly heterogeneous mental disorder, and its complex etiology and unclear mechanism are great obstacles to the diagnosis and treatment of the disease. Studies have shown that abnormal functions of the visual cortex have been reported in MDD patients, and the actions of several antidepressants coincide with improvements in the structure and synaptic functions of the visual cortex. In this review, we critically evaluate current evidence showing the involvement of the malfunctioning visual cortex in the pathophysiology and therapeutic process of depression. In addition, we discuss the molecular mechanisms of visual cortex dysfunction that may underlie the pathogenesis of MDD. Although the precise roles of visual cortex abnormalities in MDD remain uncertain, this undervalued brain region may become a novel area for the treatment of depressed patients.


Subject(s)
Depressive Disorder, Major , Visual Cortex , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Brain/pathology , Antidepressive Agents/therapeutic use , Visual Cortex/pathology
13.
Inorg Chem ; 62(1): 624-635, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36571242

ABSTRACT

The conversion of solar power to hydrogen (H2) energy efficiently encounters some obstacles due to the lack of superior catalysts and efficient catalytic approaches. Herein, three-dimensional/two-dimensional (3D/2D) CuS/g-C3N4 photothermal catalysts were obtained via an easy, one-step hydrothermal method after pyrolysis. The favorable heterojunction interface for H2 production was constructed by snowflake-like CuS embedded in the graphite carbon nitride (g-C3N4) nanosheets, leading to the acceleration of charge transfer and separation, decrease of charge transfer distance, and perfect realization of photothermal effects (PTEs) induced by near-infrared (NIR) light. The 3D/2D CuS/g-C3N4 catalyst presents a topmost H2-production rate (1422 µmol h-1 g-1) under dual wavelength (420 + 850 nm) and a moderate H2-production rate under 420 nm, which are 12-fold and 9-fold higher than pure g-C3N4, respectively, owing to a strong action from PTEs induced by NIR. The feasible NIR-enhanced photothermal catalysis is expected to apply in multifarious heat-assisted photocatalysis processes by designing multifunctional composites with super PTE and photocatalytic capacity.

14.
J Adv Res ; 51: 161-179, 2023 09.
Article in English | MEDLINE | ID: mdl-36334887

ABSTRACT

INTRODUCTION: Meteorin-like hormone (Metrnl) is ubiquitously expressed in skeletal muscle, heart, and adipose with beneficial roles in obesity, insulin resistance, and inflammation. Metrnl is found to protect against cardiac hypertrophy and doxorubicin-induced cardiotoxicity. However, its role in diabetic cardiomyopathy (DCM) is undefined. OBJECTIVES: We aimed to elucidate the potential roles of Metrnl in DCM. METHODS: Gain- andloss-of-function experimentswere utilized to determine the roles of Metrnl in the pathological processes of DCM. RESULTS: We found that plasma Metrnl levels, myocardial Metrnl protein and mRNA expressions were significantly downregulated in both streptozotocin (STZ)-induced (T1D) mice and leptin receptor deficiency (db/db) (T2D) mice. Cardiac-specific overexpression (OE) of Metrnl markedly ameliorated cardiac injury and dysfunction in both T1D and T2D mice. In sharp contrast, specific deletion of Metrnl in the heart had the opposite phenotypes. In parallel, Metrnl OE ameliorated, whereas Metrnl downregulation exacerbated high glucose (HG)-elicited hypertrophy, apoptosis and oxidative damage in primary neonatal rat cardiomyocytes. Antibody-induced blockade of Metrnl eliminated the effects of benefits of Metrnl in vitro and in vivo. Mechanistically, Metrnl activated the autophagy pathway and inhibited the cGAS/STING signaling in a LKB1/AMPK/ULK1-dependent mechanism in cardiomyocytes. Besides, Metrnl-induced ULK1 phosphorylation facilitated the dephosphorylation and mitochondrial translocation of STING where it interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase that was responsible for ubiquitination and degradation of STING, rendering cardiomyocytes sensitive to autophagy activation. CONCLUSION: Thus, Metrnl may be an attractive therapeutic target or regimen for treating DCM.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Rats , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Myocytes, Cardiac , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology
15.
Cell Death Dis ; 13(12): 1058, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539405

ABSTRACT

Alterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.


Subject(s)
Cardiolipins , Spinal Cord Injuries , Rats , Animals , Cardiolipins/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Cell Death , Mitochondria/metabolism , Phospholipids/metabolism , Homeostasis
16.
Front Physiol ; 13: 848867, 2022.
Article in English | MEDLINE | ID: mdl-35530510

ABSTRACT

Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.

17.
iScience ; 25(5): 104201, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479414

ABSTRACT

Emerging evidence suggests that dysfunction of the visual cortex may be involved in major depressive disorder (MDD). However, the underlying mechanisms remain unclear. We previously established that combined magnetic stimulation system treatment (c-MSST) resulted in an antidepressant effect in mice. In the present study, we found that V1-targeted c-MSST induced significant antidepressant effects in chronic unpredictable mild stress (CUMS)- and lipopolysaccharide (LPS)-treated mice. Proteomic screening investigation and repeatable validation revealed that expression of the V1 neuronal ATP-binding cassette transporter A1 (ABCA1) and apolipoprotein A-1 (ApoA1) was downregulated in CUMS mice, an effect that was normalized by c-MSST. Neuron-specific knockdown of ABCA1 in V1 blocked c-MSST's antidepressant effects. Mechanistically, CUMS reduced dendritic spine density and long-term plasticity in V1, and these deficits were reversed by c-MSST. V1-targeted c-MSST was found to induce rapid antidepressant effects that are mediated by alterations in synaptic plasticity via the ABCA1/ApoA1 signaling pathway in V1.

18.
Am J Transl Res ; 13(11): 12694-12703, 2021.
Article in English | MEDLINE | ID: mdl-34956484

ABSTRACT

OBJECTIVE: We investigated the mechanism of miR-103a-3p-mediated renal cell carcinoma (RCC) progression. METHODS: The miR-103a-3p expressions were measured in clinical samples and in two RCC cell lines. MiR-103a-3p was inhibited or over-expressed in the 786-O and UO31 cell lines, respectively. RESULTS: We found that miR-103a-3p is closely related to the development of RCC cells. A bioinformatics analysis and a dual-luciferase reporter gene assay revealed that there is a direct interaction between TMEM33 and miR-103a-3p. Moreover, a rescue assay further confirmed that TMEM33 overexpression can attenuate miR-103a-3p-induced RCC cell development. CONCLUSION: miR-103a-3p exerts a carcinogenic function in RCC by regulating TMEM33, a finding that may provide new insights into the development of prognostic markers and therapeutic targets for RCC.

19.
PLoS One ; 16(7): e0252048, 2021.
Article in English | MEDLINE | ID: mdl-34264955

ABSTRACT

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Subject(s)
Meningeal Neoplasms/genetics , Meningioma/genetics , Neurilemmoma/genetics , Neurofibromin 2/deficiency , Neurofibromin 2/genetics , Organophosphorus Compounds/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Cell Proliferation , Humans , Mutation , Neurilemmoma/pathology
20.
J Neurotrauma ; 38(9): 1327-1337, 2021 05 01.
Article in English | MEDLINE | ID: mdl-25386720

ABSTRACT

Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.


Subject(s)
Motor Neurons/enzymology , Muscular Atrophy/enzymology , Neuroprotective Agents/therapeutic use , Phospholipase A2 Inhibitors/therapeutic use , Phospholipases A2, Cytosolic/metabolism , Spinal Cord Injuries/epidemiology , Animals , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Neurons/drug effects , Muscular Atrophy/prevention & control , Neuroprotective Agents/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2, Cytosolic/antagonists & inhibitors , Spinal Cord Injuries/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...