Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Nanoscale ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745454

ABSTRACT

Microwave ablation (MWA) is recognized as a novel treatment modality that can kill tumor cells by heating the ions and polar molecules in these cells through high-speed rotation and friction. However, the size and location of the tumor affect the effective ablation range of microwave hyperthermia, resulting in residual tumor tissue and a high recurrence rate. Due to their tunable porous structure and high specific surface area, metal-organic frameworks (MOFs) can serve as microwave sensitizers, promoting microwave energy conversion owing to ion collisions in the porous structure of the MOFs. Moreover, iron-based compounds are known to possess peroxidase-like catalytic activity. Therefore, Fe-doped Cu bimetallic MOFs (FCMs) were prepared through a hydrothermal process. These FCM nanoparticles not only increased the efficiency of microwave-thermal energy conversion as microwave sensitizers but also promoted the generation of reactive oxygen species (ROS) by consuming glutathione (GSH) and promoted the Fenton reaction to enhance microwave dynamic therapy (MDT). The in vitro and in vivo results showed that the combination of MWA and MDT treatment effectively destroyed tumor tissues via microwave irradiation without inducing significant side effects on normal tissues. This study provides a new approach for the combined application of MOFs and microwave ablation, demonstrating excellent potential for future applications.

2.
Environ Toxicol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558324

ABSTRACT

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.

3.
Sci Rep ; 14(1): 7402, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548957

ABSTRACT

Prescribing cascade is a significant clinical problem but is often overlooked. We explore the incidence of the prescribing cascades of antigout medications related to thiazide treatment in gout-naïve hypertensive adults newly exposed to the pharmacological treatment. This population-based, retrospective cohort study used the Taiwan National Health Insurance Registry Database. Gout-naïve hypertensive adults who were newly dispensed first-line antihypertensive drugs between January 1, 2000, and December 31, 2016, were enrolled. Patients were divided into the thiazide group (n = 4192) and the non-thiazide group (n = 81,083). The non-thiazide group included patients who received an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, calcium channel blocker, or beta-blocker. The study utilized propensity score matching and multivariable Cox regression models to investigate the prescribing cascade of antigout agents following antihypertensive treatment, adjusting for factors like age, sex, comorbidities, and concurrent medications. After propensity score matching, each group consisted of 4045 patients, with the thiazide group exhibiting a higher risk of being prescribed antigout medications across different time intervals post-treatment initiation. Specifically, adjusted hazard ratios (aHRs) for the thiazide group were 2.23, 2.07, and 2.41 for < 30 days, 31-180 days, and > 180 days, respectively, indicating a sustained and significant risk over time. Comparative analyses revealed thiazide diuretics were associated with a higher risk of antigout medication prescriptions compared to other antihypertensive classes, particularly evident after 180 days. Subgroup analyses across various demographics and comorbidities consistently showed an increased risk in the thiazide cohort. Gout-naïve hypertensive adults newly dispensed thiazide had a higher risk of subsequently adding antigout agents than those taking other first-line antihypertensive medications. The awareness and interruption of these prescribing cascades are critical to improving patient safety.


Subject(s)
Gout , Hypertension , Adult , Humans , Antihypertensive Agents/therapeutic use , Sodium Chloride Symporter Inhibitors/therapeutic use , Retrospective Studies , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/chemically induced , Calcium Channel Blockers/therapeutic use , Thiazides/therapeutic use , Gout/drug therapy , Gout/complications , Gout Suppressants/therapeutic use , Diuretics/therapeutic use
4.
Opt Express ; 32(2): 2321-2332, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297765

ABSTRACT

Deep learning-based computer-generated holography (DeepCGH) has the ability to generate three-dimensional multiphoton stimulation nearly 1,000 times faster than conventional CGH approaches such as the Gerchberg-Saxton (GS) iterative algorithm. However, existing DeepCGH methods cannot achieve axial confinement at the several-micron scale. Moreover, they suffer from an extended inference time as the number of stimulation locations at different depths (i.e., the number of input layers in the neural network) increases. Accordingly, this study proposes an unsupervised U-Net DeepCGH model enhanced with temporal focusing (TF), which currently achieves an axial resolution of around 5 µm. The proposed model employs a digital propagation matrix (DPM) in the data preprocessing stage, which enables stimulation at arbitrary depth locations and reduces the computation time by more than 35%. Through physical constraint learning using an improved loss function related to the TF excitation efficiency, the axial resolution and excitation intensity of the proposed TF-DeepCGH with DPM rival that of the optimal GS with TF method but with a greatly increased computational efficiency.

5.
J Nutr Biochem ; 125: 109567, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185348

ABSTRACT

Diabetic cardiomyopathy is a common complication of diabetes, resulting in cardiac hypertrophy and heart failure associated with excessive reactive oxygen species and mitochondria-mediated apoptosis generation. Mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK), regulated by microRNA (miR)-210, affects mitochondrial function and is activated by advanced glycation end-products (AGE) in cardiac cells. Diallyl trisulfide (DATS), an antioxidant in garlic oil, inhibits stress-induced cardiac apoptosis. This study examined whether DATS enhances miR-210 expression to attenuate cardiac apoptosis. We investigated the DATS-mediated attenuation mechanism of AGE-enhanced cardiac apoptosis by modulating miR-210 and its upstream transcriptional regulator, FoxO3a. We found FoxO3a binding sites in the miR-210 promoter region. Our results indicated that DATS treatment inhibited AGE-induced JNK activation, phosphoprotein c-Jun nuclear transactivation, and cardiac apoptosis and reversed the AGE-induced reduction in cardiac miR-210 levels. The luciferase activity after DATS treatment was significantly lower than that of the control and was reversed following AGE treatment. We also showed that FoxO3a, upregulated by DATS treatment, may bind to the miR-210 promoter to enhance its expression and downregulates JNK expression to attenuate AGE-induced cardiac apoptosis. Oral administration of DATS enhanced FoxO3a expression in the heart and reduced diabetes-induced heart apoptosis. Our findings indicate that DATS mediates AGE-induced cardiac cell apoptosis attenuation by promoting FoxO3a nuclear transactivation to enhance miR-210 expression and regulate JNK activation. Our results suggest that DATS can be used as a cardioprotective agent, and miR-210 is a critical regulator in inhibiting diabetic cardiomyopathy.


Subject(s)
Allyl Compounds , Diabetic Cardiomyopathies , MicroRNAs , Humans , Up-Regulation , Diabetic Cardiomyopathies/prevention & control , Glycation End Products, Advanced , Maillard Reaction , Sulfides/pharmacology , Apoptosis , Cell Line, Tumor , Mitogen-Activated Protein Kinase Kinases , MicroRNAs/genetics
6.
J Chem Inf Model ; 64(7): 2445-2453, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37903033

ABSTRACT

miRNAs (microRNAs) target specific mRNA (messenger RNA) sites to regulate their translation expression. Although miRNA targeting can rely on seed region base pairing, animal miRNAs, including human miRNAs, typically cooperate with several cofactors, leading to various noncanonical pairing rules. Therefore, identifying the binding sites of animal miRNAs remains challenging. Because experiments for mapping miRNA targets are costly, computational methods are preferred for extracting potential miRNA-mRNA fragment binding pairs first. However, existing prediction tools can have significant false positives due to the prevalent noncanonical miRNA binding behaviors and the information-biased training negative sets that were used while constructing these tools. To overcome these obstacles, we first prepared an information-balanced miRNA binding pair ground-truth data set. A miRNA-mRNA interaction-aware model was then designed to help identify miRNA binding events. On the test set, our model (auROC = 94.4%) outperformed existing models by at least 2.8% in auROC. Furthermore, we showed that this model can suggest potential binding patterns for miRNA-mRNA sequence interacting pairs. Finally, we made the prepared data sets and the designed model available at http://cosbi2.ee.ncku.edu.tw/mirna_binding/download.


Subject(s)
MicroRNAs , Animals , Humans , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Algorithms , Computational Biology/methods
8.
Acta Cardiol Sin ; 39(5): 755-764, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720404

ABSTRACT

Background: Previous studies have reported that statins have inconsistent and marginal cardiovascular (CV) benefits in patients with end-stage renal disease (ESRD). However, whether statins play a secondary preventive role in patients with peripheral artery disease (PAD) and ESRD remains unclear. Objectives: This study aimed to compare the long-term clinical outcomes between statin users and nonusers with PAD and ESRD. Methods: This retrospective cohort study assessed the long-term protective effects of statins using data from the National Health Insurance Research Database in Taiwan. Propensity score matching was performed according to sex, age, index year, related comorbidities, and medications. The main outcomes were limb events and major adverse CV events (MACEs). Results: The statin user group (n = 4,460) was compared with the propensity score-matched statin nonuser group (n = 4,460). The mean age of the matched patients was 64 years, and 40% of the patients were men. The baseline characteristics of the groups were well-balanced. The overall limb event and MACE rates were not different between the two groups. However, the statin user group had lower rates of limb amputation [adjusted hazard ratio (aHR): 0.85, 95% confidence interval (CI): 0.73-0.99], stroke (aHR: 0.71, 95% CI: 0.62-0.83), CV death (aHR: 0.46, 95% CI: 0.32-0.66), and all-cause death (aHR: 0.45, 95% CI: 0.42-0.48) despite having a higher rate of percutaneous transluminal angioplasty for PAD. Conclusions: This population-based retrospective cohort study demonstrated that statin therapy was associated with a lower risk of limb amputation, nonfatal stroke, CV death, and all-cause death in patients with PAD and ESRD.

9.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37461261

ABSTRACT

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Animals , Wharton Jelly/metabolism , Mesenchymal Stem Cells/metabolism , Doxorubicin/toxicity , Cells, Cultured , Mitochondria/metabolism , Urodela , Cell Differentiation
10.
Cell Rep ; 42(7): 112766, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37421618

ABSTRACT

Neuraminidase is suggested as an important component for developing a universal influenza vaccine. Targeted induction of neuraminidase-specific broadly protective antibodies by vaccinations is challenging. To overcome this, we rationally select the highly conserved peptides from the consensus amino acid sequence of the globular head domains of neuraminidase. Inspired by the B cell receptor evolution process, a reliable sequential immunization regimen is designed to result in immuno-focusing by steering bulk immune responses to a selected region where broadly protective B lymphocyte epitopes reside. After priming neuraminidase protein-specific antibody responses in C57BL/6 or BALB/c inbred mice strains by immunization or pre-infection, boost immunizations with certain neuraminidase-derived peptide-keyhole limpet hemocyanin conjugates significantly strengthened serum neuraminidase inhibition activities and cross-protections. Overall, this study provides proof of concept for a peptide-based sequential immunization strategy for achieving targeted induction of cross-protective antibody response, which provides references for designing universal vaccines against other highly variable pathogens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Orthomyxoviridae Infections/prevention & control , Neuraminidase , Antibodies, Viral , Mice, Inbred C57BL , Vaccination , Peptides , Mice, Inbred BALB C , Hemagglutinin Glycoproteins, Influenza Virus
11.
Mol Biol Rep ; 50(5): 4329-4338, 2023 May.
Article in English | MEDLINE | ID: mdl-36928640

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS: To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS: Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.


Subject(s)
Calcium , Diabetic Cardiomyopathies , Rats , Animals , Calcium/metabolism , Insulin-Like Growth Factor II , Heart , Calcium-Binding Proteins/metabolism , Rats, Transgenic , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/pharmacology , Homeostasis , Myocytes, Cardiac/metabolism
12.
Exp Cell Res ; 425(2): 113540, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36889573

ABSTRACT

Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Cell Line, Tumor , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Down-Regulation/genetics , Epigenesis, Genetic/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics , Humans
13.
Environ Toxicol ; 38(3): 676-684, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36462176

ABSTRACT

Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Myocardial Infarction , Rats , Animals , Insulin-Like Growth Factor II , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Signal Transduction , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Apoptosis , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism
14.
Phytomedicine ; 108: 154467, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36252464

ABSTRACT

BACKGROUND: Although opioid agonist-based treatments are considered the first-line treatment for opioid use disorders, nonopioid alternatives are urgently needed to combat the inevitable high relapse rates. Compound 511 is a formula derived from ancient traditional Chinese medical literature on opiate rehabilitation. Previously, we observed that Compound 511 could effectively prevent the acquisition of conditioned place preference (CPP) during early morphine exposure. However, its effects on drug-induced reinstatement remain unclear. PURPOSE: This study aims to estimate the potential of Compound 511 for the therapeutic intervention of opioid relapse in rodent models and explore the potential mechanisms underlying the observed actions. STUDY DESIGN/METHODS: The CPP and locomotor sensitization paradigm were established to evaluate the therapeutic effect of Compound 511 treatment on morphine-induced neuroadaptations, followed by immunofluorescence and western blot (WB) analysis of the synaptic markers PSD-95 and Syn-1. Furthermore, several addiction-associated transcription factors and epigenetic marks were examined by qPCR and WB, respectively. Furthermore, the key active ingredients and targets of Compound 511 were further excavated by network pharmacology approach and experimental validation. RESULTS: The results proved that Compound 511 treatment during abstinence blunted both the reinstatement of morphine-evoked CPP and locomotor sensitization, accompanied by the normalization of morphine-induced postsynaptic plasticity in the nucleus accumbens (NAc). Additionally, Compound 511 was shown to exert a selectively repressive influence on morphine-induced hyperacetylation at H3K14 and a reduction in H3K9 dimethylation as well as ΔFosB activation and accumulation in the NAc. Finally, two herbal ingredients of Compound 511 and six putative targets involved in the regulation of histone modification were identified. CONCLUSION: Our findings indicated that Compound 511 could block CPP reinstatement and locomotor sensitization predominantly via the reversal of morphine-induced postsynaptic plasticity through epigenetic mechanisms. Additionally, 1-methoxy-2,3-methylenedioxyxanthone and 1,7-dimethoxyxanthone may serve as key ingredients of Compound 511 by targeting specific epigenetic enzymes. This study provided an efficient nonopioid treatment against opioid addiction.


Subject(s)
Morphine , Opioid-Related Disorders , Humans , Morphine/pharmacology , Morphine/metabolism , Nucleus Accumbens/metabolism , Analgesics, Opioid , Opioid-Related Disorders/drug therapy , Neuronal Plasticity , Recurrence
15.
Front Neurosci ; 16: 946343, 2022.
Article in English | MEDLINE | ID: mdl-36188477

ABSTRACT

Since the ambiguous boundary of the lesion and inter-observer variability, white matter hyperintensity segmentation annotations are inherently noisy and uncertain. On the other hand, the high capacity of deep neural networks (DNN) enables them to overfit labels with noise and uncertainty, which may lead to biased models with weak generalization ability. This challenge has been addressed by leveraging multiple annotations per image. However, multiple annotations are often not available in a real-world scenario. To mitigate the issue, this paper proposes a supervision augmentation method (SA) and combines it with ensemble learning (SA-EN) to improve the generalization ability of the model. SA can obtain diverse supervision information by estimating the uncertainty of annotation in a real-world scenario that per image have only one ambiguous annotation. Then different base learners in EN are trained with diverse supervision information. The experimental results on two white matter hyperintensity segmentation datasets demonstrate that SA-EN gets the optimal accuracy compared with other state-of-the-art ensemble methods. SA-EN is more effective on small datasets, which is more suitable for medical image segmentation with few annotations. A quantitative study is presented to show the effect of ensemble size and the effectiveness of the ensemble model. Furthermore, SA-EN can capture two types of uncertainty, aleatoric uncertainty modeled in SA and epistemic uncertainty modeled in EN.

16.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36093879

ABSTRACT

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Subject(s)
Hypertension , MicroRNAs , Rats , Animals , Angiotensin II/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Angiotensin, Type 1/metabolism , Tensins/metabolism , Rats, Inbred SHR , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/pharmacology , Rats, Inbred WKY , Apoptosis , Myocytes, Cardiac/metabolism , Hypertension/metabolism , MicroRNAs/metabolism
17.
Front Cardiovasc Med ; 9: 961920, 2022.
Article in English | MEDLINE | ID: mdl-36017096

ABSTRACT

Background: Acute ST-elevation myocardial infarction (STEMI) elicits a robust cardiomyocyte death and inflammatory responses despite timely revascularization. Objectives: This phase 1, open-label, single-arm, first-in-human study aimed to assess the safety and efficacy of combined intracoronary (IC) and intravenous (IV) transplantation of umbilical cord-derived mesenchymal stem cells (UMSC01) for heart repair in STEMI patients with impaired left ventricular ejection fraction (LVEF 30-49%) following successful reperfusion by percutaneous coronary intervention. Methods: Consenting patients received the first dose of UMSC01 through IC injection 4-5 days after STEMI followed by the second dose of UMSC01 via IV infusion 2 days later. The primary endpoint was occurrence of any treatment-related adverse events and the secondary endpoint was changes of serum biomarkers and heart function by cardiac magnetic resonance imaging during a 12-month follow-up period. Results: Eight patients gave informed consents, of whom six completed the study. None of the subjects experienced treatment-related serious adverse events or major adverse cardiovascular events during IC or IV infusion of UMSC01 and during the follow-up period. The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. The serial changes of LVEF were 0.67 ± 3.98, 8.09 ± 6.18, 9.04 ± 10.91, and 9.80 ± 7.56 at 1, 3, 6, and 12 months, respectively as compared to the baseline. Conclusion: This pilot study shows that combined IC and IV transplantation of UMSC01 in STEMI patients with impaired LVEF appears to be safe, feasible, and potentially beneficial in improving heart function. Further phase 2 studies are required to explore the effectiveness of dual-route transplantation of UMSC01 in STEMI patients.

18.
Cell Biochem Biophys ; 80(3): 547-554, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35776316

ABSTRACT

Oxidized low-density lipoprotein (ox-LDL) is a type of modified cholesterol that promotes apoptosis and inflammation and advances the progression of heart failure. Leucine-zipper and sterile-α motif kinase (ZAK) is a kinase of the MAP3K family which is highly expressed in the heart and encodes two variants, ZAKα and ZAKß. Our previous study serendipitously found opposite effects of ZAKα and ZAKß in which ZAKß antagonizes ZAKα-induced apoptosis and hypertrophy of the heart. This study aims to test the hypothesis of whether ZAKα and ZAKß are involved in the damaging effects of ox-LDL in the cardiomyoblast. Cardiomyoblast cells H9c2 were treated with different concentrations of ox-LDL. Cell viability and apoptosis were measured by MTT and TUNEL assay, respectively. Western blot was used to detect apoptosis, hypertrophy, and pro-survival signaling proteins. Plasmid transfection, pharmacological inhibition with D2825, and siRNA transfection were utilized to upregulate or downregulate ZAKß, respectively. Ox-LDL concentration-dependently reduces the viability and expression of several pro-survival proteins, such as phospho-PI3K, phospho-Akt, and Bcl-xL. Furthermore, ox-LDL increases cleaved caspase-3, cleaved caspase-9 as indicators of apoptosis and increases B-type natriuretic peptide (BNP) as an indicator of hypertrophy. Overexpression of ZAKß by plasmid transfection attenuates apoptosis and prevents upregulation of BNP. Importantly, these effects were abolished by inhibiting ZAKß either by D2825 or siZAKß application. Our results suggest that ZAKß upregulation in response to ox-LDL treatment confers protective effects on cardiomyoblast.


Subject(s)
Lipoproteins, LDL , Natriuretic Peptide, Brain , Animals , Apoptosis , Hypertrophy , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Natriuretic Peptide, Brain/genetics , Protein Kinases , Rats , Up-Regulation
19.
Int J Antimicrob Agents ; 58(2): 106371, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34082028

ABSTRACT

OBJECTIVES: Colistin resistance mediated by plasmids for their rapid dissemination in Enterobacteriaceae is alarming. We aimed to characterize the genetic features of mcr-1 gene as well as the role of promoters in gene expression and levels of colistin resistance among clinical isolates of Enterobacteriaceae. METHODS: Clinical isolates of Enterobacteriaceae were collected in thirteen cities in China and screened for mcr-1 gene using polymerase chain reaction (PCR) amplification and sequencing. Antimicrobial susceptibility testing, transformation assay and plasmid sequencing, quantitative real-time PCR were performed for mcr-1-positive isolates. Promoter-probe vector pKK232-8 was utilized to assess the activity of the mcr-1 promoters. RESULTS: This study identified the mcr-1 gene in 15 clinical isolates of Enterobacteriaceae, among which 14 were resistant to colistin, with MICs of 4-8 mg/L, while one mcr-1-bearing isolate EC09 was susceptible to colistin, with an MIC of 0.5 mg/L. Moreover, mcr-1-harbouring plasmids from 10 clinical isolates were transferrable via transformation and belonged to different incompatibility groups (IncI2 and IncX4). Plasmid pEC09 failed to transform and belonged to IncP1. A genetic structure containing the mcr-1-pap2 element was detected in these plasmids. EC09 demonstrated the lowest transcription level of mcr-1 gene, as determined by quantitative real-time PCR, which was in accordance with its susceptibility to colistin. Furthermore, the promoter activity of mcr-1 in pEC09 was the lowest, as determined by promoter-probe vector pKK232-8. CONCLUSION: Promoter variations were associated with expression of the mcr-1 gene and ultimately the levels of colistin resistance.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacokinetics , Colistin/therapeutic use , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Enterobacteriaceae/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/genetics , China , Enterobacteriaceae/pathogenicity , Humans
20.
Environ Toxicol ; 36(5): 926-934, 2021 May.
Article in English | MEDLINE | ID: mdl-33448586

ABSTRACT

Heart failure (HF) and cardiac hypertrophy is an unfavorable outcome of pathological cardiac remodeling and represents the most important contributing factor for HF and cardiac hypertrophy. Amygdalin (AMG) is a cyanogenic glycoside derived from bitter almonds. Accumulating evidences have highlighted their pharmacological potentials against various diseases. However, there is no report delineating the potential of AMG against angiotensin (Ang II) induced cardiac injuries. Thus, the present study was performed to explore whether AMG could ameliorate Ang II induced cardiomyopathies and thereby ascertain the underlying mechanisms thereof. To this end, H9c2 cells were treated with Ang II and thereafter treated with various concentration of AMG and finally the cardio-protective effects of AMG were analyzed through Western blotting, immunofluorescence, and insilico analysis. Our results showed that the cardiomyocyte cell size, inflammatory markers and cytokines(pNF-κB, TNF-α, iNOS and COX-2) were markedly increased following Ang II treatment; nevertheless, treatment with AMG led to considerable decrement in the Ang II induced enlargement of the cardiomyocytes, and attenuate the expression of hypertrophic markers(ANP, BNP and MHC-7), inflammatory markers and cytokines. Additionally, oxidative stress related proteins (Nrf2, catalase, SOD-2, and GPX-4) were markedly increased following AMG treatment. Molecular docking reveals the interaction of AMG with Nrf2 possessing good binding affinity. Cumulatively, our study highlights the cardio-protective role of AMG against Ang II induced cardiomyopathies, including oxidative stress and inflammation effects. The intriguing in vitro results warrants the need of further animal studies to truly ascertain their potentialities.


Subject(s)
Amygdalin , Angiotensin II , Amygdalin/pharmacology , Angiotensin II/metabolism , Animals , Cardiomegaly/chemically induced , Cardiomegaly/prevention & control , Molecular Docking Simulation , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...