Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 43(11): 5224-5233, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437094

ABSTRACT

Soil acidification improvement in the main grain production regions of southern China is an important issue to enhance the quality of cultivated land and promote grain yield. In order to explore the effects of oyster shell powder and lime on acidity and availability and inorganic forms of phosphorus in acidic paddy soil, a pot experiment was performed using oyster shell powder and lime amendments with dosages of 0.05%, 0.10%, and 0.15%. The results showed that both oyster shell powder and lime significantly (P<0.05) increased the pH and decreased exchangeable acid content of paddy soil. The improvement effects increased with the dosage of soil amendments. Under the same amendment dosage, the effects of lime on soil pH and acidity were higher than those of oyster shell powder. Both lime and oyster shell powder significantly increased the content of available P extracted using H2SO4-P, Bray-1 P, and Olsen-P techniques. The contents of inorganic P in soils decreased in the order of Fe-P>Al-P>Ca-P. The application of lime and oyster shell powder significantly increased the contents of Al-P and Fe-P in soil. Compared with the control treatment, lime and oyster shell power increased Al-P and Fe-P by 26.3%-37.4% and 7.9%-23.7%, respectively. However, there was no significant difference in Al-P content among treatments of the three amendment dosages. The contents of Fe-P and Ca-P in soils increased with an increased dosage of amendments. The activities of DHA, ALP, and IPP and the copy number of the phoD gene in soil increased with the application of lime and oyster shell powder, whereas the activities of ACP and the copy numbers of phoC and pqqC decreased. The application of lime and oyster shell powder at a rate of 0.10% and 0.15% significantly (P<0.05) increased the yield of rice. The lime and oyster shell powder treatments at the dosage of 0.15% increased rice yield by 34.2% and 46.8%, respectively, whereas the amendment had no significant effect on straw biomass of the rice crop. Correlation analysis showed that soil pH and the ALP activity were significantly positively correlated with inorganic P and available P contents, respectively. These results suggested that lime and oyster shell power could effectively increase the content of available phosphorus by eliminating soil acidity and improving the phosphatase activity, which played a positive role in increasing crop yield.


Subject(s)
Oryza , Ostreidae , Soil Pollutants , Animals , Soil/chemistry , Phosphorus , Powders , Soil Pollutants/analysis , Calcium Carbonate , Oryza/chemistry , Acids
2.
Huan Jing Ke Xue ; 43(10): 4679-4686, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224153

ABSTRACT

Cadmium (Cd) is one of the main pollutants in acidic paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to the food chain is an important environmental issue in China. In our field study, three types of inorganic passivators (silicon-calcium-magnesium-potassium fertilizer (SCMK), calcium magnesium phosphate fertilizer (CMP), and lime (L) at the rate of 750, 1500, and 2250 kg·hm-2, respectively) were applied to acidic paddy soils polluted by the heavy metal Cd in southern Zhejiang province. The objective of this study was to reveal the effects and chemical mechanisms of passivators on soil acidification and Cd accumulation in rice. The field experimental results showed that the three passivators could effectively improve soil acidification and reduce Cd accumulation in rice grains. The application of 2250 kg·hm-2 SCMK, CMP, and L increased soil pH by 0.62, 0.65, and 0.86 units; decreased exchangeable acidity by 67%, 69%, and 78%; and reduced the content of Cd in brown rice by 73%, 68%, and 77%, respectively. The application of 2250 kg·hm-2 SCMK, CMP, and L reduced the content of Cd in brown rice planted on polluted paddy rice fields to lower than 0.2 mg·kg-1, which reached the national food safety standard. Compared with the control, the application of SCMK, CMP, and L significantly (P<0.05) decreased the content of available Cd extracted by DTPA; decreased the contents of weak acid-extractable (F1) and reducible (F2) Cd; and increased the content of residual (F4) Cd. Correlation analyses indicated that Cd content in brown rice was significantly negatively correlated with soil pH and exchangeable cation content and significantly positively correlated with DTPA-Cd, weak acid-extractable (F1) and reducible (F2) Cd, and exchangeable Al contents. The partial least squares path model (PLS-PM) was used to analyze the relationship between the Cd content of brown rice, DTPA-Cd, and various chemical forms of Cd and soil properties. The direct path coefficients of soil exchangeable cations on Cd content in brown rice, available cadmium, and rice yield were -0.566, -0.866, and 0.873, respectively. Soil pH indirectly affected Cd content of brown rice mainly by directly affecting available Cd in soil. Field experiments demonstrated that the three passivators SCMK, CMP, and L were effective technologies for the safe production of rice in acidic paddy soils polluted by Cd. The possible mechanism for passivators reducing the bioavailability of Cd in soil and its accumulation in brown rice contributed to increased exchangeable cations in the soils. These findings could provide a scientific basis for the safe production of rice in acidic paddy soil polluted by heavy metals.


Subject(s)
Cadmium , Environmental Restoration and Remediation , Soil Pollutants , Cadmium/analysis , Cations/metabolism , Environmental Restoration and Remediation/methods , Oryza/chemistry , Soil Pollutants/analysis
3.
Huan Jing Ke Xue ; 41(9): 4246-4252, 2020 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-33124306

ABSTRACT

To compare the dynamic effects of straw and corresponding biochar on soil acidity, nutrients, and exchangeable capacity in red soil, a pot experiment was performed. The treatments included control (CK), rice straw (R1B0), rice straw biochar prepared at 350℃ (R1B1) and 550℃ (R1B2), rape stalk (R2B0), and rape stalk biochar prepared at 350℃ (R2B1) and 550℃ (R2B2). Straw at 1% and corresponding biochar were added to a strongly acidic red soil. The rice was planted as the experimental crop. Soils were collected at the seedling, tillering, filling and mature stages of rice growth, respectively. The changes in soil pH, exchangeable acidity, organic matter, nutrients (NH4+-N and NO3--N), and exchangeable cations in soils were measured. The results showed that soil pH, NH4+-N, and NO3--N concentrations decreased with the growth period of rice, while the organic matter content and cation exchange capacity (CEC) increased. Direct returning of straw and biochar could increase soil pH, organic matter content, and exchangeable cations content, and reduce the total amount of exchangeable acids. In the mature stage of rice, rice straw and rape stalk biochar at 350℃ increased the soil pH by 0.29 and 0.42, respectively, compared to the control treatment. Similarly, biochar decreased the exchangeable acidity and exchangeable Al3+ content significantly compared to the direct returning treatments of straw. The exchangeable acidity and exchangeable Al3+ contents of soils in R1B2 and R2B1 treatments decreased by 54.8% and 58.9%, respectively, compared to the control treatment. The soil organic matter (SOM) content and CEC in biochar treatments were significantly higher than those in direct returning treatments of straw. Overall, the effects of rape stalk biochar on soil properties were slightly stronger than those of rice straw. The correlation analysis showed that soil exchangeable acids had a significantly negative correlation with organic matter (R=-0.912, P<0.01), and CEC (R=-0.866, P<0.05). The CEC in soils was positively related to organic matter (R=0.833, P<0.05). Direct returning of straw and biochar applications can effectively improve soil acidity and increase nutrient contents. The effects of straw biochar on soils were stronger than the direct returning of straw in decreasing soil acidity, and increasing soil organic matter content and exchangeable capacity in acidic soils.


Subject(s)
Oryza , Soil Pollutants , Charcoal , Nutrients , Soil , Soil Pollutants/analysis
4.
Huan Jing Ke Xue ; 41(4): 1914-1920, 2020 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-32608700

ABSTRACT

To investigate the dynamic effects of biochars produced from different biomass materials on farmland soil acidity, exchangeable cations, phosphorus nutrient, and crop yield, a field experiment was performed on acid paddy soil. Five types of biochars-rice straw biochar (RSB), maize straw biochar (MSB), wheat straw biochar (WSB), rice husk biochar (RHB), and bamboo charcoal (BCB)-were applied to farmland soil at mass fraction of 0.1%. No biochar addition was used as control treatment (CK). The soil physicochemical properties and crop yields were analyzed after harvesting rice, rapeseed, and corn crops. Results indicated that the addition of biochars could effectively increase soil pH and exchangeable cations and reduce exchangeable acid content, but the effects decreased with time. The biochars increased the content of exchangeable K+, Ca2+, and Mg2+ and decreased the exchangeable Na+ content in soils. The biochars increased the contents of organic matter (SOM), available phosphorus, total phosphorus, and inorganic phosphorus (Al-P and Fe-P). Compared with the control treatment, biochars significantly (P<0.05) increased the yields of rice, oil seed, and maize crops. Rice husk biochar (RHB) had the best effect in improving acid soil physicochemical properties and increasing crop yield.

5.
J Zhejiang Univ Sci B ; 6(8): 731-5, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16052705

ABSTRACT

Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (chi(fd)) showed the absence of superparamagnetic (SP) grains in the samples. The IRM(20 mT) (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R(2)=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution.


Subject(s)
Algorithms , Environmental Monitoring/methods , Magnetics , Metals, Heavy/analysis , Metals, Heavy/chemistry , Vehicle Emissions/analysis , Feasibility Studies , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...