Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Zool Res ; 45(3): 633-647, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766746

ABSTRACT

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Subject(s)
Nociception , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Mice , Nociception/physiology , Neurons/physiology , Pain/physiopathology , Male , Behavior, Animal/physiology
2.
Sci Total Environ ; 930: 172716, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663626

ABSTRACT

The global concern regarding the ubiquitous presence of plastics in the environment has led to intensified research on the impact of these materials on wildlife. In the Australian context, marsupials represent a unique and diverse group of mammals, yet little is known about their exposures to plastics. This study aimed to assess the contamination levels of seven common plastics (i.e., polystyrene (PS), polycarbonate (PC), poly-(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE), and polyvinyl chloride (PVC)) in both the diet and faeces of kangaroos, wallabies and koalas sampled from a sanctuary in Northeastern Australia. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Interestingly, the analysis of the food and faeces samples revealed the absence of detectable plastic particles; with this preliminary finding suggesting a relatively limited exposure of captive Australian marsupials to plastics. This study contributes valuable insights into the current state of plastic contamination in Australian marsupials, shedding light on the limited exposures and potential risks, and highlighting the need for continued monitoring and conservation efforts. The results underscore the importance of proactive measures to mitigate plastic pollution and protect vulnerable wildlife populations in Australia's unique ecosystems.


Subject(s)
Marsupialia , Plastics , Animals , Plastics/analysis , Australia , Environmental Pollutants/analysis , Environmental Monitoring , Feces/chemistry , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis
4.
Nat Biomed Eng ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491329

ABSTRACT

Dental calculi can cause gingival bleeding and periodontitis, yet the mechanism underlying the formation of such mineral build-ups, and in particular the role of the local microenvironment, are unclear. Here we show that the formation of dental calculi involves bacteria in local mature biofilms converting the DNA in neutrophil extracellular traps (NETs) from being degradable by the enzyme DNase I to being degradation resistant, promoting the nucleation and growth of apatite. DNase I inhibited NET-induced mineralization in vitro and ex vivo, yet plasma DNases were ineffective at inhibiting ectopic mineralization in the oral cavity in rodents. The topical application of the DNA-intercalating agent chloroquine in rodents fed with a dental calculogenic diet reverted NET DNA to its degradable form, inhibiting the formation of calculi. Our findings may motivate therapeutic strategies for the reduction of the prevalence of the deposition of bacteria-driven calculi in the oral cavity.

5.
Oral Dis ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148479

ABSTRACT

OBJECTIVES: To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS: Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-ß1 (TGF-ß1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-ß1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS: Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-ß1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-ß1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS: Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.

6.
Adv Sci (Weinh) ; 10(35): e2303113, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37877615

ABSTRACT

N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.


Subject(s)
Central Nervous System Sensitization , Neuralgia , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Spinal Cord Dorsal Horn/metabolism , Up-Regulation/genetics
7.
Neurochem Res ; 48(12): 3652-3664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37592110

ABSTRACT

Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.


Subject(s)
DNA Methylation , Neuralgia , Down-Regulation , Hyperalgesia/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Octamer Transcription Factor-1/metabolism , Oxaliplatin/adverse effects , RNA, Small Interfering/therapeutic use , Spinal Cord Dorsal Horn/metabolism , Animals , Rats
8.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Article in English | MEDLINE | ID: mdl-37395388

ABSTRACT

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Subject(s)
Osteoarthritis , Vascular Endothelial Growth Factor A , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Molecular Docking Simulation , Osteoarthritis/metabolism , RNA/genetics
9.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Article in English | MEDLINE | ID: mdl-37328100

ABSTRACT

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Subject(s)
Oral Submucous Fibrosis , Humans , Rats , Animals , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Epithelial-Mesenchymal Transition , Myofibroblasts/metabolism , Epithelial Cells/metabolism
10.
Nat Catal ; 5(10): 952-967, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36465553

ABSTRACT

The Trp metabolite kynurenine (KYN) accumulates in numerous solid tumours and mediates potent immunosuppression. Bacterial kynureninases (KYNases), which preferentially degrade kynurenine, can relieve immunosuppression in multiple cancer models, but immunogenicity concerns preclude their clinical use, while the human enzyme (HsKYNase) has very low activity for kynurenine and shows no therapeutic effect. Using fitness selections, we evolved a HsKYNase variant with 27-fold higher activity, beyond which exploration of >30 evolutionary trajectories involving the interrogation of >109 variants led to no further improvements. Introduction of two amino acid substitutions conserved in bacterial KYNases reduced enzyme fitness but potentiated rapid evolution of variants with ~500-fold improved activity and reversed substrate specificity, resulting in an enzyme capable of mediating strong anti-tumour effects in mice. Pre-steady-state kinetics revealed a switch in rate-determining step attributable to changes in both enzyme structure and conformational dynamics. Apart from its clinical significance, our work highlights how rationally designed substitutions can potentiate trajectories that overcome barriers in protein evolution.

11.
Front Immunol ; 13: 933973, 2022.
Article in English | MEDLINE | ID: mdl-36045691

ABSTRACT

Background: Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods: In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results: Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion: Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.


Subject(s)
Apoptosis , Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Mutation , Neoplasm Grading , Prognosis , Tumor Microenvironment/genetics , Copper
12.
Nat Commun ; 13(1): 2833, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595757

ABSTRACT

The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , HEK293 Cells , Humans , RNA/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
13.
BMC Cancer ; 21(1): 1209, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772393

ABSTRACT

BACKGROUND: To identify candidate key genes and pathways related to resting mast cells in meningioma and the underlying molecular mechanisms of meningioma. METHODS: Gene expression profiles of the used microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. GO and KEGG pathway enrichments of DEGs were analyzed using the ClusterProfiler package in R. The protein-protein interaction network (PPI), and TF-miRNA- mRNA co-expression networks were constructed. Further, the difference in immune infiltration was investigated using the CIBERSORT algorithm. RESULTS: A total of 1499 DEGs were identified between tumor and normal controls. The analysis of the immune cell infiltration landscape showed that the probability of distribution of memory B cells, regulatory T cells (Tregs), and resting mast cells in tumor samples were significantly higher than those in the controls. Moreover, through WGCNA analysis, the module related to resting mast cells contained 158 DEGs, and KEGG pathway analysis revealed that the DEGs were dominant in the TNF signaling pathway, cytokine-cytokine receptor interaction, and IL-17 signaling pathway. Survival analysis of hub genes related to resting mast cells showed that the risk model was constructed based on 9 key genes. The TF-miRNA- mRNA co-regulation network, including MYC-miR-145-5p, TNFAIP3-miR-29c-3p, and TNFAIP3-hsa-miR-335-3p, were obtained. Further, 36 nodes and 197 interactions in the PPI network were identified. CONCLUSION: The results of this study revealed candidate key genes, miRNAs, and pathways related to resting mast cells involved in meningioma development, providing potential therapeutic targets for meningioma treatment.


Subject(s)
Gene Expression Profiling , Mast Cells/cytology , Meningeal Neoplasms/genetics , Meningioma/genetics , Algorithms , Databases, Genetic , Humans , Immunity, Cellular , Interleukin-17/metabolism , Memory B Cells/cytology , Meningeal Neoplasms/immunology , Meningeal Neoplasms/pathology , Meningioma/immunology , Meningioma/pathology , MicroRNAs/metabolism , Protein Interaction Maps , Signal Transduction , T-Lymphocytes, Regulatory/cytology
14.
Front Neurol ; 12: 576382, 2021.
Article in English | MEDLINE | ID: mdl-33643183

ABSTRACT

Objective: This study aimed to investigate the molecular mechanism of tumor necrosis factor (TNF) superfamily-related genes and potential therapeutic drugs for glioblastoma multiforme (GBM) patients based on transcriptome and epigenome. Methods: Gene expression data, corresponding clinical data, and methylation data of GBM samples and normal samples in the TCGA-GBM and GTEx datasets were downloaded. The TNF-related genes were obtained, respectively, from two groups in the TCGA dataset. Then, the TNF-related differentially expressed genes (DEGs) were investigated between two groups, followed by enrichment analysis. Moreover, TNF superfamily-related gene expression and upstream methylation regulation were investigated to explore candidate genes and the prognostic model. Finally, the protein expression level of candidate genes was performed, followed by drug prediction analysis. Results: A total of 41 DEGs including 4 ligands, 18 receptors, and 19 downstream signaling molecules were revealed between two groups. These DEGs were mainly enriched in pathways like TNF signaling and functions like response to TNF. A total of 5 methylation site-regulated prognosis-related genes including TNF Receptor Superfamily Member (TNFRSF) 12A, TNFRSF11B, and CD40 were explored. The prognosis model constructed by 5 genes showed a well-prediction effect on the current dataset and verification dataset. Finally, drug prediction analysis showed that zoledronic acid (ZA)-TNFRSF11B was the unique drug-gene relation in both two databases. Conclusion: Methylation-driven gene TNFRSF12A might participate in the development of GBM via response to the TNF biological process and TNF signaling pathway and significantly associated with prognosis. ZA that targets TNFRSF11B expression might be a potential effective drug for clinical treatment of GBM.

15.
Medicine (Baltimore) ; 99(46): e23243, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33181713

ABSTRACT

BACKGROUND: This study uses a method of systematic evaluation to evaluate the safety and effectiveness of heated humidified high-flow nasal cannula (HHHFNC) as an initial ventilation method in the treatment of neonatal respiratory distress syndrome (NRDS) scientifically. In the field of evidence-based medicine, this study provides a theoretical reference and basis for choosing appropriate initial non-invasive ventilation methods in the treatment of NRDS, thereby providing assistance for clinical treatment. METHODS: The main electronic network databases were searched by computer, including 4 Chinese databases: CNKI, WangFang Data, CQVIP, SinoMed and 3 English databases: PubMed, The Cochrane Library and EMBASE, the time range of retrieval from the beginning of each database to September 1, 2020. The content involves all the published randomized controlled trials on the effectiveness of HHHFNC compared with NCPAP as an initial ventilation method in the treatment of NRDS. Using a search method that combines medical subject words and free words. Based on the Cochrane risk bias assessment tool, 2 researchers independently screen the literature, and then extract the data we needed in the literature, and cross-check. If it is difficult to decide whether to include literature, then turning to a third researcher for help and making a final decision after discussion, and using RevMan 5.3 and STATA 13.0 to analyze the relative data. RESULTS: Based on the method of meta-analysis, this study analyzes the pre-determined outcome indicators through scientific statistical analysis, and compares the effectiveness and safety of HHHFNC compared with NCPAP as an initial ventilation method in the treatment of NRDS. All results will be published in peer-reviewed high-quality professional academic journals. CONCLUSION: Based on evidence-based medicine, this study will obtain the establishing evidence of comparison that the clinical effectiveness and safety of HHHFNC compared with NCPAP as an initial ventilation method in the treatment of NRDS through the existing data and data, which provides the evidence support of evidence-based medicine in the treatment of NRDS. OSF REGISTRATION NUMBER: September 17, 2020. osf.io/f6at4 (https://osf.io/f6at4).


Subject(s)
Cannula/standards , Clinical Protocols , Humidifiers/standards , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome, Newborn/drug therapy , Humans , Infant, Newborn , Meta-Analysis as Topic , Noninvasive Ventilation/methods , Noninvasive Ventilation/standards , Oxygen/administration & dosage , Oxygen/therapeutic use , Oxygen Inhalation Therapy/standards , Systematic Reviews as Topic
16.
PLoS One ; 15(10): e0232858, 2020.
Article in English | MEDLINE | ID: mdl-33002018

ABSTRACT

Zika virus (ZIKV) exhibits a tropism for brain tumor cells and has been used as an oncolytic virus to target brain tumors in mice with modest effects on extending median survival. Recent studies have highlighted the potential for combining virotherapy and immunotherapy to target cancer. We postulated that ZIKV could be used as an adjuvant to enhance the long-term survival of mice with malignant glioblastoma and generate memory T-cells capable of providing long-term immunity against cancer remission. To test this hypothesis mice bearing malignant intracranial GL261 tumors were subcutaneously vaccinated with irradiated GL261 cells previously infected with the ZIKV. Mice also received intracranial injections of live ZIKV, irradiation attenuated ZIKV, or irradiated GL261 cells previously infected with ZIKV. Long-term survivors were rechallenged with a second intracranial tumor to examine their immune response and look for the establishment of protective memory T-cells. Mice with subcutaneous vaccination plus intracranial irradiation attenuated ZIKV or intracranial irradiated GL261 cells previously infected with ZIKV exhibited the greatest extensions to overall survival. Flow cytometry analysis of immune cells within the brains of long-term surviving mice after tumor rechallenge revealed an increase in the number of T-cells, including CD4+ and tissue-resident effector/ effector memory CD4+ T-cells, in comparison to long-term survivors that were mock-rechallenged, and in comparison to naïve untreated mice challenged with intracranial gliomas. These results suggest that ZIKV can serve as an adjuvant to subcutaneous tumor vaccines that enhance long-term survival and generate protective tissue-resident memory CD4+ T-cells.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Oncolytic Virotherapy , T-Lymphocytes/immunology , Zika Virus/immunology , Adjuvants, Immunologic , Animals , Brain Neoplasms/immunology , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines , Glioblastoma/immunology , Immunologic Memory , Immunotherapy , Mice , Mice, Inbred C57BL
17.
Onco Targets Ther ; 13: 9513-9523, 2020.
Article in English | MEDLINE | ID: mdl-33061435

ABSTRACT

BACKGROUND: MicroRNAs have been identified as major regulators and therapeutic targets of glioblastoma (GBM). It is thus meaningful to study the miRNAs differentially expressed (DE-miRNAs) in GBM. MATERIALS AND METHODS: We performed a meta-analysis of previously published microarray data using the R-based "metaMA" package to identify DE-miRNAs.The biological processes of the DE-miRNAs were then analyzed using FunRich. KEGG pathways of the DE-miRNAs gene targets were analyzed by mirPath V.3. Luciferase activity assay was performed to validate that OXSM is a direct target of hsa-miR338-3p. Flow cytometry was used to detect the effects of miR-338-3p on GBM cell proliferation, apoptosis and cell cycle. RESULTS: DE-miRNAs in blood and brain tissue from GBM were identified. "Type I interferon signaling pathway" and "VEGF and VEGFR signaling network" were the most significantly enriched biological processes shared by all GBM types. In KEGG pathway analysis, DE-miRNAs both in blood and tissue show altered fatty acid biosynthesis. Further validation shows hsa-miR-338-3p regulates fatty acid metabolism by directly targeting OXSM gene. In addition, our data revealed an accelerated cell cycle and an anti-apoptotic role for OXSM in glioma cells, which has not been reported. Finally, we confirmed that hsa-miR-338-3p inhibitor antagonized the effect of downregulation of OXSM on cell cycle and apoptosis of GBM cells. CONCLUSION: We revealed that hsa-miR-338-3p, down-regulated in GBM, may affect the biogenesis and rapid proliferation of glioma cells by regulating the level of OXSM, providing new insights into understanding the pathogenesis of GBM and developing strategies to improve GBM prognosis.

18.
Cancer Cell Int ; 20: 419, 2020.
Article in English | MEDLINE | ID: mdl-32874133

ABSTRACT

BACKGROUND AND AIMS: Glioblastoma (GBM) is a common and aggressive primary brain tumor, and the prognosis for GBM patients remains poor. This study aimed to identify the key genes associated with the development of GBM and provide new diagnostic and therapies for GBM. METHODS: Three microarray datasets (GSE111260, GSE103227, and GSE104267) were selected from Gene Expression Omnibus (GEO) database for integrated analysis. The differential expressed genes (DEGs) between GBM and normal tissues were identified. Then, prognosis-related DEGs were screened by survival analysis, followed by functional enrichment analysis. The protein-protein interaction (PPI) network was constructed to explore the hub genes associated with GBM. The mRNA and protein expression levels of hub genes were respectively validated in silico using The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases. Subsequently, the small molecule drugs of GBM were predicted by using Connectivity Map (CMAP) database. RESULTS: A total of 78 prognosis-related DEGs were identified, of which10 hub genes with higher degree were obtained by PPI analysis. The mRNA expression and protein expression levels of CETN2, MKI67, ARL13B, and SETDB1 were overexpressed in GBM tissues, while the expression levels of CALN1, ELAVL3, ADCY3, SYN2, SLC12A5, and SOD1 were down-regulated in GBM tissues. Additionally, these genes were significantly associated with the prognosis of GBM. We eventually predicted the 10 most vital small molecule drugs, which potentially imitate or reverse GBM carcinogenic status. Cycloserine and 11-deoxy-16,16-dimethylprostaglandin E2 might be considered as potential therapeutic drugs of GBM. CONCLUSIONS: Our study provided 10 key genes for diagnosis, prognosis, and therapy for GBM. These findings might contribute to a better comprehension of molecular mechanisms of GBM development, and provide new perspective for further GBM research. However, specific regulatory mechanism of these genes needed further elaboration.

19.
J Transl Med ; 18(1): 327, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32867782

ABSTRACT

BACKGROUND: This study was intended to investigate the genomic landscape of the immune microenvironments of brain metastases in breast cancer. METHODS: Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, the tumor immune microenvironment and immune cell infiltration were analyzed. Then immune-related genes were identified, followed by function analysis, transcription factor (TF)-miRNA-mRNA co-regulatory network analysis, and survival analysis of metastatic recurrence. RESULTS: The present results showed that the tumor immune microenvironment in brain metastases was immunosuppressed compared with primary caner. Compared with primary cancer samples, the infiltration ratio of plasma cells in brain metastases samples was significantly higher, while the infiltration ratio of macrophages M2 cells in brain metastases samples was significantly lower. Total 42 immune-related genes were identified, such as THY1 and NEU2. CD1B, THY1 and DOCK2 were found to be implicated in the metastatic recurrence of breast cancer. CONCLUSIONS: Targeting macrophages or plasma cells may be new strategies for immunotherapy of breast cancer with brain metastases. THY1 and NEU2 may be potential therapeutic targets for breast cancer with brain metastases, and THY1, CD1B and DOCK2 may serve as potential prognostic markers for improvement of brain metastases survival.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Brain Neoplasms/genetics , Breast , Breast Neoplasms/genetics , Genomics , Humans , Tumor Microenvironment
20.
Proc Natl Acad Sci U S A ; 117(23): 13000-13011, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32434918

ABSTRACT

Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.


Subject(s)
Cystathionine gamma-Lyase/pharmacology , Methionine/antagonists & inhibitors , Mutagenesis, Site-Directed , Prostatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/isolation & purification , Cystathionine gamma-Lyase/therapeutic use , DNA Damage/drug effects , Enzyme Assays , Humans , Male , Methionine/blood , Methionine/metabolism , Mice , Poly(ADP-ribose) Polymerases/metabolism , Prostatic Neoplasms/blood , Reactive Oxygen Species/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Toxicity Tests, Acute , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL