Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 285: 127740, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795408

ABSTRACT

Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.


Subject(s)
Abietanes , Calcium , Endophytes , Hydrogen Peroxide , Plant Roots , Salvia miltiorrhiza , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/microbiology , Hydrogen Peroxide/metabolism , Abietanes/biosynthesis , Abietanes/metabolism , Endophytes/metabolism , Endophytes/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Calcium/metabolism , Calcium Signaling/drug effects , Lanthanum/pharmacology , Lanthanum/metabolism , Gene Expression Regulation, Plant , Hypocreales/metabolism , Hypocreales/genetics
2.
Curr Microbiol ; 80(9): 306, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37501023

ABSTRACT

Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.


Subject(s)
Coix , Epichloe , Coix/microbiology , Epichloe/genetics
3.
J Environ Manage ; 161: 11-20, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26143081

ABSTRACT

In this study, the removal of fosthiazate in an aqueous solution using zero valent iron (ZVI) and the related removal reaction mechanism were investigated. The results indicate that the dissipation of fosthiazate adheres to a pseudo-first order reaction law. The apparent rate constant of fosthiazate removal could be improved by increasing the ZVI dosage, control temperature and initial pH. The observed pseudo-first-order degradation rate constants (Kobs) of fosthiazate removal using ZVI were varied in the different electrolyte solutions, and were determined as follows: Kobs (MgSO4) < Kobs (KCl) < Kobs (Control)

Subject(s)
Antinematodal Agents/isolation & purification , Iron/chemistry , Organophosphorus Compounds/isolation & purification , Thiazolidines/isolation & purification , Antinematodal Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnesium Sulfate/chemistry , Organophosphorus Compounds/chemistry , Sodium Chloride/chemistry , Solutions/chemistry , Thiazolidines/chemistry , Water/chemistry , Water Pollutants, Chemical/isolation & purification
4.
J Contam Hydrol ; 177-178: 18-29, 2015.
Article in English | MEDLINE | ID: mdl-25805364

ABSTRACT

While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.


Subject(s)
Bentonite , Colloids/chemistry , Hydrology/methods , Adsorption , Bentonite/analysis , Bentonite/chemistry , Groundwater/chemistry , Hydrogen-Ion Concentration , Metals/chemistry , Osmolar Concentration , Oxides , Pesticides/chemistry , Porosity , Silicon Dioxide , Solutions , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Thiadiazoles , Thiazoles/analysis , Thiazoles/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL