Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(9): e0291793, 2023.
Article in English | MEDLINE | ID: mdl-37725618

ABSTRACT

INTRODUCTION: Ropivacaine oil delivery depot (RODD) can slowly release ropivacaine and block nerves for a long timejavascript:;. The aim of the present work was to investigate the safety, pharmacokinetics, and preliminary pharmacodynamics of RODD in subcutaneous injection among healthy subjects. METHODS: The abdomens of 3 subjects were subcutaneously administered with a single-needle RODD containing 12~30 mg of ropivacaine. The irritation, nerve blocking range and optimum dose were investigated. Forty-one subjects were divided into RODD groups containing 150, 230, 300, 350 and 400 mg of ropivacaine and a ropivacaine hydrochloride injection (RHI) 150 mg group. Multineedle subcutaneous injection of RODD or RHI was performed in the abdomens of the subjects. The primary endpoint was a safe dose or a maximum dose of ropivacaine (400 mg). Subjects' vital signs were observed; their blood was analyzed; their cardiovascular system and nervous systems were monitored, and their dermatological reactions were observed and scored. Second, the ropivacaine concentrations in plasma were determined, pharmacokinetic parameters were calculated, and the anesthetic effects of RODD were studied, including RODD onset time, duration and intensity of nerve block. RESULTS: Single-needle injection of RODD 24 mg was optimal for 3 subjects, and the range of nerve block was 42.5±20.8 mm. Multineedle subcutaneous injection of RODD in the abdomens of subjects was safe, and all adverse events were no more severe than grade II. The incidence rate of grade II adverse events, such as pain, and abnormal ST and ST-T segment changes on electrocardiography, was approximately 1%. The incidence rate of grade I adverse events, including erythema, papules, hypertriglyceridemia, and hypotension was greater than 10%. Erythema and papules were relieved after 24 h and disappeared after 72 h. Other adverse reactions disappeared after 7 days. The curve of ropivacaine concentration-time in plasma presented a bimodal profile. The results showed that ropivacaine was slowly released from the RODD. Compared with the 150 mg RHI group, Tmax was longer in the RODD groups. In particular, Tmax in the 400 mg RODD group was longer than that in the RHI group (11.8±4.6 h vs. 0.77±0.06 h). The Cmax in the 150 mg RODD group was lower than that in the 150 mg RHI group (0.35±0.09 vs. 0.58±0.13 µg·mL-1). In particular, the Cmax increased by 48% when the dose was increased by 2.6 times in the 400 mg group. Cmax, the AUC value and the intensity of the nerve block increased with increasing doses of RODD. Among them, the 400 mg RODD group presented the strongest nerve block (the percentage of level 2 and 3, 42.9%). The corresponding median onset time was 0.42 h, and the duration median was 35.7⁓47.7 h. CONCLUSIONS: RODD has a sustained release effect. Compared with the RHI group, Tmax was delayed in the RODD groups, and the duration of nerve block was long. No abnormal reaction was found in the RODD group containing 400 mg of ropivacaine after subcutaneous injection among healthy subjects, suggesting that RODD was adequately safe. TRIAL REGISTRATION: Chictr.org: CTR2200058122; Chinadrugtrials.org: CTR20192280.


Subject(s)
Hypotension , Humans , Ropivacaine/adverse effects , Healthy Volunteers , Pain , Electrocardiography
2.
Mediators Inflamm ; 2022: 4083477, 2022.
Article in English | MEDLINE | ID: mdl-35990042

ABSTRACT

Degradable hemostatic materials have unique advantages in reducing the amount of bleeding, shortening the surgical operation time, and improving patient prognosis. However, none of the current hemostatic materials are ideal and have disadvantages. Therefore, a novel biodegradable cellulose-based composite hemostatic material was prepared by crosslinking sodium carboxymethyl cellulose (CCNa) and hydroxyethyl cellulose (HEC), following an improved vacuum freeze-drying method. The resulting cellulose composite material was neutral in pH and spongy with a density of 0.042 g/cm3, a porosity of 77.68%, and an average pore size of 13.45 µm. The composite's compressive and tensile strengths were 0.1 MPa and 15.2 MPa, respectively. Under in vitro conditions, the composites were degraded gradually through petite molecule stripping and dissolution, reaching 96.8% after 14 days and 100% degradation rate at 21 days. When implanted into rats, the degradation rate of the composite was slightly faster, reaching 99.7% in 14 days and 100% in 21 days. Histology showed a stable inflammatory response and no evidence of cell degeneration, necrosis, or abnormal hyperplasia in the tissues around the embedded material, indicating good biocompatibility. In the hemorrhagic liver model, the time to hemostasis and the total blood loss in the cellulose composite group was significantly lower than in the medical gauze group and the blank control group (P < 0.05). These data indicate that the novel cellulose composite is a promising implantable hemostatic material in clinical settings.


Subject(s)
Hemostatics , Animals , Cellulose/chemistry , Hemorrhage , Hemostasis , Hemostatics/chemistry , Rats
3.
BMC Anesthesiol ; 22(1): 113, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35448955

ABSTRACT

BACKGROUND: Ropivacaine oil delivery depot (RODD) can be used to treat postoperative incision pain. The aim was to study pharmacodynamics, toxicity and toxicokinetics of RODD. METHODS: The base research of RODD were conducted. Thirty rabbits were randomly divided into saline, solvent, ropivacaine aqueous injection (RAI) 0.9 mg, RODD 0.9 mg and RODD 3 mg groups. The sciatic nerve of rabbits were isolated, dripped with RODD and the effect of nerve block were observed. In toxicity study, the rats were divided into saline, solvent and RODD 75, 150 and 300 mg/kg groups, 30 rats per group. In toxicokinetics, rats were divided into RODD 75, 150 and 300 mg/kg groups, 18 rats per group. The rats were subcutaneously injected drugs. RESULTS: The analgesic duration of RODD 3 mg and RAI 0.9 mg blocking ischiadic nerve lasted about 20 h and 2 h, respectively, and their blocking intensity was similar. The rats in RODD 75 mg/kg did not show any toxicity. Compared with saline group, in RODD 150 mg/kg group neutrophils and mononuclear cells increased, lymphocytes decreased and albumin decreased(P < 0.05), and pathological examination showed some abnormals. In RODD 300 mg/kg group, 10 rats died and showed some abnormalities in central nerve system, hematologic indexes, part of biochemical indexes, and the weights of spleen, liver, and thymus. However, these abnormal was largely recovered on 14 days after the dosing. The results of toxicokinetics of RODD 75 mg/kg group showed that the Cmax was 1.24 ± 0.59 µg/mL and the AUC(0-24 h) was 11.65 ± 1.58 h·µg/mL. CONCLUSIONS: Subcutaneous injection RODD releases ropivacaine slowly, and shows a stable and longer analgesic effect with a large safety range.


Subject(s)
Anesthetics, Local , Ropivacaine , Animals , Rabbits , Rats , Anesthetics, Local/pharmacology , Anesthetics, Local/toxicity , Pain, Postoperative/drug therapy , Ropivacaine/pharmacology , Ropivacaine/toxicity , Sciatic Nerve , Solvents , Toxicokinetics
4.
PLoS One ; 16(9): e0257012, 2021.
Article in English | MEDLINE | ID: mdl-34478474

ABSTRACT

Sodium carboxymethyl starch (CMS-Na), a kind of food additive with high degree of substitution, is also known as a prebiotic. The aim of this study was to determine the effect of CMS-Na on defecation. Constipated mouse model was prepared by loperamide. Normal rats were also used in the study. Short-chain fatty acids in rat feces were detected by gas chromatography. The bacterial communities in rat feces were identified by 16S rDNA gene sequencing. 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase 1 (Tph1) were measured by ELISA. The results showed that CMS-Na increased the fecal granule counts and intestinal propulsion rate in constipated mice. The contents of water, acetic acid, propionic acid and n-butyrate in feces, Tph1 in colon and 5-HT in serum of rats were increased. In addition, CMS-Na shortened the colonic transport time in rats. The 16S rDNA gene sequencing results indicated that CMS-Na increased the relative abundance of Alloprevotella and decreased the proportion of Lactobacillus. However, the biodiversity of the normal intestinal flora was not altered. In conclusion, CMS-Na can promote defecation in constipated mice. The mechanism may be related to the regulation of Alloprevotella and Lactobacillus in colon, the increase of short-chain fatty acids, and the promotion of the synthesis of Tph1 and 5-HT.


Subject(s)
Constipation/drug therapy , Defecation/drug effects , Gastrointestinal Microbiome/drug effects , Prebiotics/administration & dosage , Starch/analogs & derivatives , Animals , Bacteria/drug effects , Mice , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Starch/administration & dosage , Starch/pharmacology , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL