Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107294, 2024 May.
Article in English | MEDLINE | ID: mdl-38636665

ABSTRACT

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Subject(s)
Action Potentials , Atrial Fibrillation , Exenatide , Kv1.5 Potassium Channel , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Voltage-Gated Sodium Channel Blockers , Animals , Humans , Male , Rats , Action Potentials/drug effects , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , HEK293 Cells , Kv1.5 Potassium Channel/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Rats, Sprague-Dawley , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
2.
Phytomedicine ; 128: 155500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484627

ABSTRACT

Ginger, a well-known spice plant, has been used widely in medicinal preparations for pain relief. However, little is known about its analgesic components and the underlying mechanism. Here, we ascertained, the efficacy of ginger ingredient 8-Shogaol (8S), on inflammatory pain and tolerance induced by morphine, and probed the role of TRPV1 in its analgesic action using genetic and electrophysiology approaches. Results showed that 8S effectively reduced nociceptive behaviors of mice elicited by chemical stimuli, noxious heat as well as inflammation, and antagonized morphine analgesic tolerance independent on opioid receptor function. Genetic deletion of TRPV1 significantly abolished 8S' analgesia action. Further calcium imaging and patch-clamp recording showed that 8S could specifically activate TRPV1 in TRPV1-expressing HEK293T cells and dorsal root ganglion (DRG) neurons. The increase of [Ca2+]i in DRG was primarily mediated through TRPV1. Mutational and computation studies revealed the key binding sites for the interactions between 8S and TRPV1 included Leu515, Leu670, Ile573, Phe587, Tyr511, and Phe591. Further studies showed that TRPV1 activation evoked by 8S resulted in channel desensitization both in vitro and in vivo, as may be attributed to TRPV1 degradation or TRPV1 withdrawal from the cell surface. Collectively, this work provides the first evidence for the attractive analgesia of 8S in inflammatory pain and morphine analgesic tolerance mediated by targeting pain-sensing TRPV1 channel. 8S from dietary ginger has potential as a candidate drug for the treatment of inflammatory pain.


Subject(s)
Catechols , Ganglia, Spinal , TRPV Cation Channels , Zingiber officinale , TRPV Cation Channels/metabolism , Zingiber officinale/chemistry , Animals , Humans , HEK293 Cells , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Catechols/pharmacology , Mice , Male , Mice, Inbred C57BL , Inflammation/drug therapy , Analgesics/pharmacology , Morphine/pharmacology , Calcium/metabolism
3.
J Ethnopharmacol ; 314: 116624, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37182676

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation plays pivotal role in the development of chronic diseases. Reducing chronic inflammation is an important strategy for preventing and managing many chronic diseases. In traditional Chinese medicine, the processed Buthus martensii Karsch (BmK) scorpion (also called "Quanxie") has been used to treat chronic inflammatory arthritis and spondylitis for hundreds of years suggests that "Quanxie" could potentially be utilized as a resource for identifying new anti-inflammatory compounds. However, the molecular basis and the underline mechanism for the anti-inflammatory effect of processed BmK scorpion are still unclear. AIM OF THE STUDY: The study aims to determine the potential involvement of macrophage-expressed Kv1.3 in the anti-inflammatory effect of processed BmK scorpion venom, as well as to identify new Kv1.3 blockers derived from processed BmK scorpion. MATERIALS AND METHODS: In this study, the in vivo and in vitro anti-inflammatory activities were determined using carrageenan-induced paw edema, LPS-induced sepsis mouse models and LPS-induced macrophage activation model respectively. The effect of processed BmK scorpion water extract, processed BmK venom and BmKK2 on different potassium channels were detected by whole-cell voltage-clamp recordings on transfected HEK293 cells or mouse BMDMs. The cytokines were detected using Q-PCR and competitive enzyme-linked immunosorbent assay. High performance liquid chromatography, SDS-PAGE and peptide Mass Spectrometry analysis were used to isolate and identify the BmKK2. SiRNA, western blotting and flow cytometry were used to analysis the anti-inflammatory mechanism of BmKK2. RESULTS: Here we demonstrate that BmKK2, a thermostable toxin targeting Kv1.3 is the critical anti-inflammatory component in the processed BmK scorpion. BmKK2 inhibits inflammation by targeting and inhibiting the activity of macrophage Kv1.3, thereby inhibiting the activation of NF-κB-NLRP3 pathway and the subsequent release of inflammatory factors. CONCLUSIONS: These findings provide new insights into the molecular basis of the anti-inflammatory effects of "Quanxie" and highlight the importance of targeting Kv1.3 expressed on macrophages as an anti-inflammatory approach.


Subject(s)
NF-kappa B , Scorpion Venoms , Mice , Humans , Animals , Scorpions/chemistry , Scorpions/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Lipopolysaccharides , HEK293 Cells , Macrophages/metabolism , Inflammation , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry
4.
Neuroreport ; 34(4): 220-231, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36719835

ABSTRACT

OBJECTIVES: This study was aimed at evaluating the effects of dexpramipexole (DPX) - a mitochondrial protectant that sustains mitochondrial function and energy production - on cognitive function in a mouse model of sepsis-associated encephalopathy (SAE) induced by peripheral administration of lipopolysaccharide (LPS) and examining the potential mechanisms. METHODS: C57BL/6 male mice were randomized into one of four treatment protocols: Con+Sal, Con+DPX, LPS+Sal or LPS+DPX. The mice were intraperitoneally (i.p.) injected with LPS or equivalent volumes of normal saline once daily for 3 consecutive days. To evaluate the protective effects of DPX, we administered DPX or normal saline i.p. to the mice once daily for 6 consecutive days. Six mice in each group were decapitated on day 7, and each brain was rapidly removed and separated into two halves for biochemical and histochemical analysis. The remaining surviving mice in each group were subjected to behavioral tests from days 7 to 10. RESULTS: Peripheral administration of LPS to mice led to learning and memory deficits in behavioral tests, which were associated with mitochondrial impairment and ATP depletion in the hippocampus. Repeated DPX treatment protected the mitochondria against LPS-induced morphological and functional impairment; inhibited the activation of the Nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1-dependent pyroptosis pathway and cytochrome c (Cyt-c)-caspase-3-dependent apoptosis pathway; and attenuated LPS-induced neuroinflammation and cell death in the hippocampus in SAE mice. CONCLUSIONS: Mitochondria-mediated pyroptosis and apoptosis are involved in the pathogenesis of cognitive deficits in a mouse model of SAE and DPX protects mitochondria and suppresses the mitochondria-medicated pyroptosis and apoptosis pathways, and ameliorates LPS-induced neuroinflammation and cognitive deficits. This study provides theoretical evidence supporting DPX for the treatment of SAE.


Subject(s)
Sepsis-Associated Encephalopathy , Male , Mice , Animals , Sepsis-Associated Encephalopathy/drug therapy , Pyroptosis , Pramipexole , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases , Saline Solution/metabolism , Saline Solution/pharmacology , Mice, Inbred C57BL , Apoptosis , Cognition , Mitochondria/metabolism
5.
J Ethnopharmacol ; 288: 114998, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35063590

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic pain management represents a serious healthcare problem worldwide. The use of opioid analgesics for pain has always been hampered by their side effects; in particular, the addictive liability associated with chronic use. Finding a morphine replacement has been a long-standing goal in the field of analgesia. In traditional Chinese medicine, processed Buthus martensii Karsch (BmK) scorpion has been used as a painkiller to treat chronic inflammatory arthritis and spondylitis, so called "Scorpio-analgesia". However, the molecular basis and the underline mechanism for the Scorpio-analgesia are still unclear. AIM OF THE STUDY: The study aims to investigate the molecular basis of "Scorpio analgesia" and identify novel analgesics from BmK scorpion. MATERIALS AND METHODS: In this study, the analgesic abilities were determined using formalin-, acetic acid- and complete Freund's adjuvant-induced pain models. The effect of BmK venom and processed BmK venom on Nav1.7 were detected by whole-cell voltage-clamp recordings on HEK293-hNav1.7 stable cell line. Action potentials in Dorsal root ganglion (DRG) neurons induced by Makatoxin-3-R58A were recorded in current-clamp mode. The content of Makatoxin-3 was detected using competitive enzyme-linked immunosorbent assay based on the Makatoxin-3 antibody. High performance liquid chromatography, western blot and circular dichroism spectroscopy were used to analysis the stability of Makatoxin-3. RESULTS: Here we demonstrate that Makatoxin-3, an α-like toxin in BmK scorpion venom targeting Nav1.7 is the critical component in Scorpio-analgesia. The analgesic effect of Makatoxin-3 could not be reversed by naloxone and is more potent than Nav1.7-selective inhibitors and non-steroidal anti-inflammatory drugs in inflammatory models. Moreover, a R58A mutant of Makatoxin-3 is capable of eliciting analgesia effect without inducing pain response. CONCLUSIONS: This study advances ion channel biology and proposes Nav1.7 agonists, rather than the presumed Nav1.7-only blockers, for non-narcotic relief of chronic pain.


Subject(s)
Analgesics/pharmacology , Inflammation/drug therapy , Pain/drug therapy , Scorpion Venoms/pharmacology , Action Potentials/drug effects , Analgesics/isolation & purification , Animals , Disease Models, Animal , Freund's Adjuvant , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Neurons/drug effects , Pain/pathology , Voltage-Gated Sodium Channel Agonists/isolation & purification , Voltage-Gated Sodium Channel Agonists/pharmacology
6.
Pain ; 163(2): e202-e214, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34252912

ABSTRACT

ABSTRACT: Gain-of-function and loss-of-function mutations in Nav1.7 cause chronic pain and pain insensitivity, respectively. The preferential expression of Nav1.7 in the peripheral nervous system and its role in human pain signaling make Nav1.7 a promising target for next-generation pain therapeutics. However, pharmacological agents have not fully recapitulated these pain phenotypes, and because of the lack of subtype-selective molecular modulators, the role of Nav1.7 in the perception of pain remains poorly understood. Scorpion venom is an excellent source of bioactive peptides that modulate various ion channels, including voltage-gated sodium (Nav) channels. Here, we demonstrate that Buthus martensii Karsch scorpion venom (BV) elicits pain responses in mice through direct enhancement of Nav1.7 activity and have identified Makatoxin-3, an α-like toxin, as a critical component for BV-mediated effects on Nav1.7. Blocking other Nav subtypes did not eliminate BV-evoked pain responses, supporting the pivotal role of Nav1.7 in BV-induced pain. Makatoxin-3 acts on the S3-S4 loop of voltage sensor domain IV (VSD4) of Nav1.7, which causes a hyperpolarizing shift in the steady-state fast inactivation and impairs inactivation kinetics. We also determined the key residues and structure-function relationships for the toxin-channel interactions, which are distinct from those of other well-studied α toxins. This study not only reveals a new mechanism underlying BV-evoked pain but also enriches our knowledge of key structural elements of scorpion toxins that are pivotal for toxin-Nav1.7 interactions, which facilitates the design of novel Nav1.7 selective modulators.


Subject(s)
Chronic Pain , Scorpion Stings , Scorpion Venoms , Animals , Chronic Pain/genetics , Humans , Mice , Phenotype , Scorpion Venoms/chemistry , Scorpion Venoms/toxicity , Scorpions
7.
J Integr Neurosci ; 19(4): 663-671, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33378840

ABSTRACT

The effects of Danggui Sini decoction on peripheral neuropathy in oxaliplatin-induced peripheral is established. The results indicated that Danggui Sini decoction treatment significantly reduced the current amplitude of dorsal root ganglia cells undergoing agonists stimuli compared to the model-dorsal root ganglia group (P < 0.05). Danggui Sini decoction treatment significantly inhibited the inflammatory response of dorsal root ganglia cells compared to the model-dorsal root ganglia group (P < 0.05). Danggui Sini decoction treatment significantly enhanced the amounts of Nissl bodies in dorsal root ganglia cells compared to the Model-dorsal root ganglia group (P < 0.05). Danggui Sini decoction treatment improved ultra-microstructures of dorsal root ganglia cells. In conclusion, Danggui Sini decoction protected against neurotoxicity of oxaliplatin-induced peripheral neuropathy in rats by suppressing inflammatory lesions, improving ultra-microstructures, and enhancing amounts of Nissl bodies.


Subject(s)
Antineoplastic Agents/toxicity , Drugs, Chinese Herbal/pharmacology , Ganglia, Spinal/drug effects , Neurotoxicity Syndromes/prevention & control , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/prevention & control , Animals , Electrophysiological Phenomena/drug effects , Male , Patch-Clamp Techniques , Rats , Rats, Wistar
8.
J Ethnopharmacol ; 248: 112317, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31629862

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arnebiae Radix, a common herbal medicine in China, is often utilized to treat blood-heat syndrome and has been reported to exert an effect on the heart. AIM OF THE STUDY: The combination of acetylcholine (Ach) and CaCl2 has been widely used to induce atrial fibrillation (AF) in animals. However, whether Arnebiae Radix displays any preventive action on Ach-CaCl2 induced AF in rats remains uncertain. In our study, we attempted to investigate the protective effects of Arnebiae Radix on Ach-CaCl2 induced AF compared to amiodarone, which was employed as the positive control. MATERIALS AND METHODS: To establish the AF model, SD rats were treated with a mixture of 0.1 mL/100 g Ach-CaCl2 (60 µg/mL Ach and 10 mg/mL CaCl2) by tail vein injection for 7 days. Rats were also given a gavage of Arnebiae Radix (0.18 g/mL) one week before or concurrently with the establishment of the AF model. At the end of the experimental period, the induction, duration and timing of AF were monitored using electrocardiogram recordings. Left atrial tissues were stained to observe the level of fibrosis. Electrophysiological measurements were used to examine atrial size and function. RESULTS: In Ach-CaCl2-induced AF rats, Arnebiae Radix decreased AF induction, duration and susceptibility to AF. In addition, Arnebiae Radix significantly reduced atrial fibrosis and inhibited atrial enlargement induced by Ach-CaCl2. Moreover, there was an apparent improvement in cardiac function in the Arnebiae Radix-treated group. CONCLUSIONS: Our findings indicate that Arnebiae Radix treatment can attenuate Ach-CaCl2-induced atrial injury and serve as an effective therapeutic strategy for the treatment of AF in the future.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/prevention & control , Atrial Function, Left/drug effects , Atrial Remodeling/drug effects , Boraginaceae , Heart Rate/drug effects , Plant Extracts/pharmacology , Acetylcholine , Animals , Anti-Arrhythmia Agents/isolation & purification , Atrial Fibrillation/chemically induced , Atrial Fibrillation/physiopathology , Boraginaceae/chemistry , Calcium Chloride , Disease Models, Animal , Fibrosis , Male , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
9.
World J Surg Oncol ; 17(1): 175, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31672162

ABSTRACT

BACKGROUND AND OBJECTIVES: Lymph node metastasis is a key factor in predicting and determining the prognosis of patients with colorectal cancer (CRC). Sodium channels are highly expressed in a variety of tumors and are closely related to tumor development, metastasis, and invasion. We investigated the relationship between the expressions of different subtypes of Nav channels and lymph node metastasis of CRC. METHODS: Real-time PCR (RT-qPCR) was carried out to measure the expressions of different sodium channel subtypes, chemokine receptors (CCR2, CCR4, CCR7), and lymphocyte infiltration-related biomarkers (CD3e, CD8a, IL-2RA) in CRC tissues from 97 patients. The expressions of Nav1.5 and Nav1.6 in surgically isolated lymph nodes were detected by immunohistochemistry. Correlation analysis between expressions of different genes and lymph node metastasis was performed by two-tailed t test. RESULTS: Nav1.1 and Nav1.6 were highly expressed in CRC tissues and positively correlated with CRC lymph node metastasis. Nav1.6 was also highly expressed in metastatic lymph nodes. Further analysis showed that the high expression of Nav1.6 was closely related to the one of CCR2\CCR4 in tumor lymph node metastasis. CONCLUSIONS: These results suggested that Nav1.6 might be a novel marker for CRC lymph node metastasis.


Subject(s)
Colorectal Neoplasms/pathology , NAV1.6 Voltage-Gated Sodium Channel/analysis , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/metabolism , Female , Humans , Lymphatic Metastasis , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Receptors, CCR2/analysis , Receptors, CCR4/analysis
10.
J Immunother Cancer ; 7(1): 326, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31775862

ABSTRACT

BACKGROUND: It is unclear whether plant-derived extracellular vesicles (EVs) can mediate interspecies communication with mammalian cells. Tumor-associated macrophages (TAMs) display a continuum of different polarization states between tumoricidal M1 phenotype and tumor-supportive M2 phenotypes, with a lower M1/M2 ratio correlating with tumor growth, angiogenesis and invasion. We investigated whether EVs from ginseng can alter M2-like polarization both in vitro and in vivo to promote cancer immunotherapy. METHODS: A novel EVs-liked ginseng-derived nanoparticles (GDNPs) were isolated and characterized from Panax ginseng C. A. Mey. Using GDNPs as an immunopotentiator for altering M2 polarized macrophages, we analyzed associated surface markers, genes and cytokines of macrophages treated with GDNPs. Mice bearing B16F10 melanoma were treated with GDNPs therapy. Tumor growth were assessed, and TAM populations were evaluated by FACS and IF. RESULTS: GDNPs significantly promoted the polarization of M2 to M1 phenotype and produce total reactive oxygen species, resulting in increasing apoptosis of mouse melanoma cells. GDNP-induced M1 polarization was found to depend upon Toll-like receptor (TLR)-4 and myeloid differentiation antigen 88 (MyD88)-mediated signaling. Moreover, ceramide lipids and proteins of GDNPs may play an important role in macrophage polarization via TLR4 activation. We found that GDNPs treatment significantly suppressed melanoma growth in tumor-bearing mice with increased presence of M1 macrophages detected in the tumor tissue. CONCLUSIONS: GDNPs can alter M2 polarization both in vitro and in vivo, which contributes to an antitumor response. The polarization of macrophages induced by GDNPs is largely dependent on TLR4 and MyD88 signalling. GDNPs as an immunomodulator participate in mammalian immune response and may represent a new class of nano-drugs in cancer immunotherapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/immunology , Nanoparticles , Panax/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Centrifugation, Density Gradient , Disease Models, Animal , Drug Stability , Humans , Lipids/chemistry , Macrophages/metabolism , Male , Melanoma/drug therapy , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Melanoma, Experimental , Mice , Myeloid Differentiation Factor 88/metabolism , Nanoparticles/chemistry , Phagocytosis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tissue Distribution , Toll-Like Receptor 4/metabolism , Xenograft Model Antitumor Assays
11.
Mol Cell Biochem ; 455(1-2): 119-125, 2019 May.
Article in English | MEDLINE | ID: mdl-30535530

ABSTRACT

Hepatocellular carcinoma (HCC) is one of leading causes of cancer-related death, and its increasing incidence worldwide is a cause for concern. The recombinant analgesic-antitumor peptide (rAGAP), a protein consisting of small ubiquitin-related modifier linked with a hexa-histidine tag, exhibited the antitumor activity in HepG2 tumors in our previous study. However, the underlying molecular mechanism of its antitumor activity was still elusive. In this work, we found that treatment with rAGAP reduced phosphorylation of AKT at non-toxic doses in HepG2 cells in vitro. More importantly, treatment of HepG2 cells with rAGAP downregulated protein expression of HIF-1α, suppressed activities of HIF, reduced secretion of VEGF and IL-8, and suppressed HepG2-induced tube formation by HUVEC, which was reversed by co-incubation with SC-79 (an AKT activator). Furthermore, in tumors of athymic mice with HepG2, treatment with rAGAP reduced phosphorylation of AKT, downregulated protein expression of HIF-1α and VEGF, and microvessel density marked by positive CD31 staining. Collectively, rAGAP inhibited angiogenesis by suppressing AKT activation, which partly explained its antitumor activity in HCC.


Subject(s)
Analgesics/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Peptides/pharmacokinetics , Proto-Oncogene Proteins c-akt/metabolism , Acetates/pharmacology , Animals , Benzopyrans/pharmacology , Carcinoma, Hepatocellular/blood supply , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Enzyme Activation/drug effects , Hep G2 Cells , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Liver Neoplasms/blood supply , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/enzymology , Neovascularization, Pathologic/pathology
12.
Free Radic Biol Med ; 120: 13-24, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29530794

ABSTRACT

Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2-/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2+/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN.


Subject(s)
Antineoplastic Agents/toxicity , NF-E2-Related Factor 2/metabolism , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidative Stress/physiology
13.
Mol Pain ; 14: 1744806918761238, 2018.
Article in English | MEDLINE | ID: mdl-29424271

ABSTRACT

Background Several studies have shown that scorpion venom peptide BmK AGAP has an analgesic activity. Our previous study also demonstrated that intraplantar injection of BmK AGAP ameliorates formalin-induced spontaneous nociceptive behavior. However, the effect of intrathecal injection of BmK AGAP on nociceptive processing is poorly understood. Methods We investigated the effects of intrathecal injection of BmK AGAP on spinal nociceptive processing induced by chronic constrictive injury or formalin. Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and the von Frey filaments test. Formalin-induced spontaneous nociceptive behavior was also investigated. C-Fos expression was assessed by immunohistochemistry. Phosphorylated mitogen-activated protein kinase (p-MAPK) expression was monitored by Western blot assay. Results Intrathecal injection of BmK AGAP reduced chronic constrictive injury-induced neuropathic pain behavior and pain from formalin-induced inflammation, accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. The results of combining low doses of different MAPK inhibitor (U0126, SP600125, or SB203580; 0.1 µg for each inhibitor) with a low dose of BmK AGAP (0.2 µg) suggested that BmK AGAP could potentiate the effects of MAPK inhibitors on inflammation-associated pain. Conclusion Our results demonstrate that intrathecal injection of BmK AGAP produces a sensory-specific analgesic effect via a p-MAPK-dependent mechanism.


Subject(s)
Analgesics/therapeutic use , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Scorpion Venoms/therapeutic use , Sensation , Spinal Cord/enzymology , Analgesics/pharmacology , Animals , Constriction , Disease Models, Animal , Down-Regulation/drug effects , Formaldehyde , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Injections, Spinal , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-fos/metabolism , Scorpion Venoms/administration & dosage , Scorpion Venoms/pharmacology , Sensation/drug effects , Spinal Cord/drug effects , Spinal Cord/pathology
14.
J Ethnopharmacol ; 213: 311-320, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29180043

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bungarus multicinctus snake belongs to Elapidae family and is widely distributed in southern China. It is widely used in traditional Chinese medicine with the effect of dispelling wind and removing obstruction in the meridians. Moreover, it is also as a chief ingredient of many polyherbal formulations for the treatment of cancer. AIM OF THE STUDY: To evaluate the antitumor activity of Bungarus multicinctus snake venom components and isolate, characterize the most effective anti-tumor component of Bungarus multicinctus snake venom. MATERIALS AND METHODS: The in vitro antitumor activity of Bungarus multicinctus venom components was detected by cytotoxicity assay and cell apoptosis assay. A unique LAAO from Bungarus multicinctus venom named as BM-Apotxin was isolated and characterized by Sephadex G-75 gel filtration, Sephadex G-25 desalting, Q ion-exchange chromatography and subsequent amino acids sequence determination. The LAAO activity and enzyme kinetics of BM-Apotxin was detected by microplate assay. RESULTS: BM-Apotxin, a 65KDa glycoprotein, which contributed to the most anti-tumor effects of Bungarus multicinctus venom. BM-Apotxin can selectively kill tumor cells, with less cytotoxicity to the normal cells. BM-Apotxin is an L-amino acid oxidase (LAAO) with high sequence identity to other snake venom LAAOs. Its anti-tumor activity is mainly due to the hydrogen peroxide produced from LAAO oxidation. But the catalase did not reverse its anti-tumor effect completely. Like other snake venom LAAOs, BM-Apotxin can oxidize many L amino acids, not D amino acids. The optimum substrate for BM-Apotxin is L-Phe. Moreover, BM-Apotxin deglycosylation can significantly reduce the LAAO activity and anti-tumor activity of BM-Apotxin. CONCLUSION: This study will facilitate the study on anti-tumor mechanism of snake venom and drug development based on Bungarus multicinctus venom.


Subject(s)
Bungarus , Elapid Venoms/pharmacology , L-Amino Acid Oxidase/isolation & purification , L-Amino Acid Oxidase/pharmacology , Amino Acid Sequence , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Elapid Venoms/chemistry , Humans , L-Amino Acid Oxidase/chemistry
15.
Sci Rep ; 7(1): 16458, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184081

ABSTRACT

Neomorphic mutation R140Q in the metabolic enzyme isocitrate dehydrogenase 2 (IDH2) is found to be a driver mutation in cancers. Recent studies revealed that allosteric inhibitors could selectively inhibit IDH2/R140Q and induce differentiation of TF-1 erythroleukemia and primary human AML cells. However, the allosteric inhibition mechanism is not very clear. Here, we report the results from computational studies that AGI-6780 binds tightly with the divalent cation binding helices at the homodimer interface and prevents the transition of IDH2/R140Q homodimer to a closed conformation that is required for catalysis, resulting in the decrease of the binding free energy of NADPHs. If the allosteric inhibitor is removed, the original open catalytic center of IDH2/R140Q will gradually reorganize to a quasi-closed conformation and the enzymatic activity might recover. Unlike IDH2/R140Q, AGI-6780 locks one monomer of the wild-type IDH2 in an inactive open conformation and the other in a half-closed conformation, which can be used to explain the selectivity of AGI-6780. Our results suggest that conformational changes are the primary contributors to the inhibitory potency of the allosteric inhibitor. Our study will also facilitate the understanding of the inhibitory and selective mechanisms of AG-221 (a promising allosteric inhibitor that has been approved by FDA) for mutant IDH2.


Subject(s)
Enzyme Inhibitors/chemistry , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Models, Molecular , Molecular Conformation , Mutation , Alleles , Allosteric Regulation/drug effects , Allosteric Site , Amino Acid Substitution , Binding Sites , Catalytic Domain , Enzyme Inhibitors/pharmacology , Humans , Molecular Dynamics Simulation , NADP/chemistry , NADP/metabolism , Protein Binding , Protein Multimerization , Structure-Activity Relationship
16.
Front Pharmacol ; 8: 344, 2017.
Article in English | MEDLINE | ID: mdl-28638341

ABSTRACT

Oxaliplatin is clinically compelling because of severe peripheral neuropathy. The side effect can result in dosage reductions or even cessation of chemotherapy, and no effective treatments are available. AC591 is a standardized extract of Huangqi Guizhi Wuwu decoction, an herbal formula recorded in "Synopsis of the Golden Chamber" for improving limb numbness and pain. In this study, we investigated whether AC591 could protect against oxaliplatin-induced peripheral neuropathy. To clarify it, a rat model of oxaliplatin-induced peripheral neuropathy was established, and neuroprotective effect of AC591 was studied. Our results showed that pretreatment with AC591 reduced oxaliplatin-induced cold hyperalgesia, mechanical allodynia as well as morphological damage of dorsal root ganglion. Microarray analysis indicated the neuroprotective action of AC591 depended on the modulation of multiple molecular targets and pathways involved in the downregulation of inflammation and immune response. Moreover, AC591 enhanced the antitumor activity of oxaliplatin to some extent in Balb/c mice bearing CT-26 carcinoma cells. The efficacy of AC591 is also investigated in 72 colorectal cancer patients. After four cycles of treatment, the percentage of grades 1-2 neurotoxicity in AC591-treated group (n = 36) was 25%, whereas in the control group the incidence was 55.55% (P < 0.01) (n = 36). No significant differences in the tumor response rate between the two groups were found. These evidences suggested that AC591 can prevent oxaliplatin-induced neuropathy without reducing its antitumor activity, and may be a promising adjuvant to alleviate sensory symptoms in clinical practice.

17.
Cancer Res ; 77(4): 926-936, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28011619

ABSTRACT

Aberrant expression of thioredoxin 1 (Trx1) plays an important role in cancer initiation and progression and has gained attention as an anticancer drug target. Here we report that the recently discovered natural diterpenoid isoforretin A (IsoA) significantly inhibits Trx1 activity and mediates anticancer effects in multiple preclinical settings. The inhibitory effect of IsoA was antagonized by free radical scavengers polyethylene glycol-catalase, polyethylene glycol superoxide dismutase, thiol-based antioxidants N-acetylcysteine and glutathione. Mass spectrometry analysis revealed that the mechanism of action was based on direct conjugation of IsoA to the Cys32/Cys35 residues of Trx1. This conjugation event attenuated reversible thiol reduction of Trx1, leading to ROS accumulation and a broader degradation of thiol redox homeostasis in cancer cells. Extending these in vitro findings, we documented that IsoA administration inhibited the growth of HepG2 tumors in a murine xenograft model of hepatocellular carcinoma. Taken together, our findings highlight IsoA as a potent bioactive inhibitor of Trx1 and a candidate anticancer natural product. Cancer Res; 77(4); 926-36. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Reactive Oxygen Species/metabolism , Thioredoxins/antagonists & inhibitors , Animals , Apoptosis/drug effects , DNA Breaks, Double-Stranded , Diterpenes/therapeutic use , Hep G2 Cells , Humans , MAP Kinase Kinase Kinase 5/physiology , MAP Kinase Signaling System , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Oxidative Stress/drug effects , Polyethylene Glycols/pharmacology , Superoxide Dismutase/pharmacology , Xenograft Model Antitumor Assays
18.
Sci Rep ; 6: 35030, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27733755

ABSTRACT

As one of the three major human pathogens that cause schistosomiasis, Schistosoma japonicum is the only one that is endemic in China. Despite great progress on schistosomiasis control over the past 50 years in China, S. japonicum transmission still occurs in certain endemic regions, which causes significant public health problems and enormous economic losses. During different life stages, parasites are able to survive dramatic osmolality changes between its vector, fresh water, and mammal host. However, the molecular mechanism of parasite osmoregulation remains unknown. To address this challenging question, we report the first cloning of an S. japonicum aquaglyceroporin (SjAQP) from an isolate from Jiangsu province, China. Expressing SjAQP in Xenopus oocytes facilitated the permeation of water, glycerol, and urea. The water permeability of SjAQP was inhibited by 1 mM HgCl2, 3 mM tetraethylammonium, 1 mM ZnCl2, and 1 mM CuSO4. SjAQP was constitutively expressed throughout the S. japonicum life cycle, including in the egg, miracidia, cercaria, and adult stages. The highest expression was detected during the infective cercaria stage. Our results suggest that SjAQP plays a role in osmoregulation throughout the S. japonicum life cycle, especially during cercariae transformation, which enables parasites to survive osmotic challenges.


Subject(s)
Aquaglyceroporins/genetics , Aquaglyceroporins/metabolism , Cloning, Molecular/methods , Schistosoma japonicum/physiology , Animals , Animals, Genetically Modified , Fresh Water/parasitology , Gene Expression Regulation, Developmental , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans , Mice , Oocytes/metabolism , Osmoregulation , Schistosoma japonicum/metabolism , Xenopus/genetics
19.
PLoS One ; 11(9): e0163080, 2016.
Article in English | MEDLINE | ID: mdl-27658047

ABSTRACT

The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.

20.
Sci Rep ; 6: 32206, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27553905

ABSTRACT

Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be neuroprotective in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson's disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing PD.


Subject(s)
Autophagy/drug effects , Isothiocyanates/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Rotenone/toxicity , Animals , Cell Line , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Glutathione/metabolism , Humans , Male , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Parkinson Disease/etiology , Sulfoxides , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...