Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(11): 7055-7062, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36875881

ABSTRACT

High-performance polyimide-based porous carbon/crystalline composite absorbers (PIC/rGO and PIC/CNT) were prepared by vacuum freeze-drying and high-temperature pyrolysis. The excellent heat resistance of polyimides (PIs) ensured the integrity of their pore structure during high-temperature pyrolysis. The complete porous structure improves the interfacial polarization and impedance-matching conditions. Furthermore, adding appropriate rGO or CNT can improve the dielectric losses and obtain good impedance-matching conditions. The stable porous structure and strong dielectric loss enable fast attenuation of electromagnetic waves (EMWs) inside PIC/rGO and PIC/CNT. The minimum reflection loss (RLmin) for PIC/rGO is -57.22 dB at 4.36 mm thickness. The effective absorption bandwidth (EABW, RL below -10 dB) for PIC/rGO is 3.12 GHz at 2.0 mm thickness. The RLmin for PIC/CNT is -51.20 dB at 2.02 mm thickness. The EABW for PIC/CNT is 4.08 GHz at 2.4 mm thickness. The PIC/rGO and PIC/CNT absorbers designed in this work have simple preparations and excellent EMW absorption performances. Therefore, they can be used as candidate materials in EMW absorbing materials.

2.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559763

ABSTRACT

Polyimide (PI) membrane is an ideal gas separation material due to its advantages of high designability, good mechanical properties and easy processing; however, it has equilibrium limitations in gas selectivity and permeability. Introducing nanoparticles into polymers is an effective method to improve the gas separation performance. In this work, nano-attapulgite (ATP) functionalized with KH-550 silane coupling agent was used to prepare polyimide/ATP composite membranes by in-situ polymerization. A series of characterization and performance tests were carried out on the membranes. The obtained results suggested a significant increase in gas permeability upon increasing the ATP content. When the content of ATP was 50%, the gas permeability of H2, He, N2, O2, CH4, and CO2 reached 11.82, 12.44, 0.13, 0.84, 0.10, and 4.64 barrer, which were 126.87%, 119.40%, 160.00%, 140.00%, 150.00% and 152.17% higher than that of pure polyimide, respectively. No significant change in gas selectivity was observed. The gas permeabilities of membranes at different pressures were also investigated. The inefficient polymer chain stacking and the additional void volume at the interface between the polymer and TiO2 clusters leaded to the increase of the free volume, thus improving the permeability of the polyimide membrane. As a promising separation material, the PI/ATP composite membrane can be widely used in gas separation industry.

3.
RSC Adv ; 12(45): 29070-29077, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320773

ABSTRACT

A simple method that combines liquid-liquid phase separation and high-temperature pyrolysis has been developed for the synthesis of polyimide-derived porous carbon/Co particle-based composite absorbers (PIC/Co-800 and PIC/Co-1000). The excellent heat resistance of polyimide allows the composite precursor to maintain its porous structure during pyrolysis. According to the results, PIC/Co-800 and PIC/Co-1000 have a coral-like porous structure, which can enhance the impedance matching property and microwave attenuation ability of the synthesized materials. The impedance matching condition and dissipation ability of PIC/Co-800 and PIC/Co-1000 have been enhanced due to the synergistic effect between the carbon-induced dielectric loss and Co nanoparticle-induced magnetic loss. PIC/Co-1000 shows the highest absorption performance with a minimum reflection loss (RL) of -40.22 dB at a thickness of 5.3 mm and an effective absorption bandwidth (EABW, RL ≤ -10 dB) of 4.10 GHz at a thickness of 1.4 mm. With thicknesses in the range of 1.4 mm to 5.3 mm, the minimum RL value of each thickness is lower than -15 dB. Therefore, this work provides a new strategy for the synthesis of promising absorbing materials with outstanding EMW absorption performance.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144881

ABSTRACT

Due to its unique physical and chemical properties, MXene has recently attracted much attention as a promising candidate for wastewater treatment. However, the low water permeation flux of MXene membrane remains a challenge that has not been fully solved. In this study, attapulgite was used to increase the flux of MXene membrane through a facile one-pot method, during which the MXene nanosheets were self-assembled while being intercalated by the attapulgite nanorods to finally form the composite membranes. Under optimal conditions, an increase of water permeation flux of 97.31% could be observed, which was attributed to the broadened nano-channel upon the adequate intercalation of attapulgite nanorods. Its permeation flux and rejection rate for methylene blue (MB) were further studied for diverse applications. In contrast to bare MXene, the permeation flux increased by 61.72% with a still high rejection rate of 90.67%, owing to the size rejection. Overcoming a key technique barrier, this work successfully improved the water permeability of MXene by inserting attapulgite nanorods, heralding the exciting prospects of MXene-based lamellar membrane in dye wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...