Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
2.
Toxics ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668474

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and arsenic (As) are common pollutants co-existing in the environment, causing potential hazards to the ecosystem and human health. How their behaviors are affected by micro/nano particles in the environment are still not very clear. Through a series of static adsorption experiments, this study investigated the adsorption of pyrene and arsenite (As (III)) using micro/nano carbon black and iron oxide under different conditions. The objectives were to determine the kinetics and isotherms of the adsorption of pyrene and As (III) using micro/nano carbon black and iron oxide and evaluate the impact of co-existing conditions on the adsorption. The microstructure of micro/nano carbon black (C 94.03%) is spherical-like, with a diameter of 100-200 nm. The micro/nano iron oxide (hematite) has irregular rod-shaped structures, mostly about 1 µm long and 100-200 nm wide. The results show that the micro/nano black carbon easily adsorbed the pyrene, with a pseudo-second-order rate constant of 0.016 mg/(g·h) and an adsorption capacity of 283.23 µg/g at 24 h. The micro/nano iron oxide easily adsorbed As (III), with a pseudo-second-order rate constant of 0.814 mg/(g·h) and an adsorption capacity of 3.45 mg/g at 24 h. The mechanisms of adsorption were mainly chemical reactions. Micro/nano carbon black hardly adsorbed As (III), but its adsorption capability for pyrene was reduced by the presence of As (III), and this effect increased with an increase in the As (III) concentration. The adsorbed pyrene on the micro/nano black carbon could hardly be desorbed. On the other hand, the micro/nano iron oxide could hardly adsorb the pyrene, but its adsorption capability for As (III) was increased by the presence of pyrene, and this effect increased with an increase in the pyrene concentration. The results of this study provide guidance for the risk management and remediation of the environment when there is combined pollution of PAHs and As.

3.
China CDC Wkly ; 6(8): 139-142, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38476821

ABSTRACT

What is already known about this topic?: Acute respiratory infections (ARIs) are a significant contributor to illness and death in children. There has been a notable rise in the occurrence of ARIs and the associated pathogens in China, which has garnered worldwide attention. What is added by this report?: This study conducted a retrospective analysis of the clinical characteristics of children with ARIs in Wuhan City from September to November 2023. The study evaluated the epidemiological patterns of common respiratory viruses and Mycoplasma pneumoniae (MP), revealing a continued prevalence of MP and a growing trend of influenza. Our findings emphasize that the circulation of respiratory viruses and MP has not returned to pre-pandemic levels, underscoring the importance of enhancing surveillance for respiratory pathogens. What are the implications for public health practice?: The epidemiology of ARIs and the pathogens involved need to be emphasized. This highlights the importance of developing policies to protect children from respiratory pathogens such as MP, influenza, and respiratory syncytial virus.

4.
Environ Pollut ; 347: 123679, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462199

ABSTRACT

Close relationships exist between metal(loid)s exposure and embryo implantation failure (EIF) from animal and epidemiological studies. However, there are still inconsistent results and lacking of sensitive metal(loid) exposure biomarkers associated with EIF risk. We aimed to ascertain sensitive metal(loid) biomarkers to EIF and provide potential biological explanations. Candidate metal(loid) biomarkers were measured in the female hair (FH), female serum (FS), and follicular fluid (FF) with various exposure time periods. An analytical framework was established by integrating epidemiological association results, comprehensive literature searching, and knowledge-based adverse outcome pathway (AOP) networks. The sensitive biomarkers of metal(loid)s along with potential biological pathways to EIF were identified in this framework. Among the concerned 272 candidates, 45 metal(loid)s biomarkers across six time periods and three biomatrix were initially identified by single-metal(loid) analyses. Two biomarkers with counterfactual results according to literature summary results were excluded, and a total of five biomarkers were further determined from 43 remained candidates in mixture models. Finally, four sensitive metal(loid) biomarkers were eventually assessed by overlapping AOP networks information, including Se and Co in FH, and Fe and Zn in FS. AOP networks also identified key GO pathways and proteins involved in regulation of oxygen species biosynthetic, cell proliferation, and inflammatory response. Partial dependence results revealed Fe in FS and Co in FH at their low levels might be potential sensitive exposure levels for EIF. Our study provided a typical framework to screen the crucial metal(loid) biomarkers and ascertain that Se and Co in FH, and Fe and Zn in FS played an important role in embryo implantation.


Subject(s)
Metalloids , Metals, Heavy , Animals , Female , Metals/toxicity , Metals/analysis , Embryo Implantation , Biomarkers , Hair/chemistry , Metals, Heavy/analysis , Environmental Monitoring , Metalloids/analysis , China , Risk Assessment
5.
Pediatr Rheumatol Online J ; 22(1): 24, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287413

ABSTRACT

BACKGROUND: Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS: Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS: Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS: Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Epstein-Barr Virus Infections , Respiratory Tract Infections , Humans , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinases/genetics , Antibodies, Antineutrophil Cytoplasmic , Herpesvirus 4, Human , Class I Phosphatidylinositol 3-Kinases/genetics , Phenotype , Mutation , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/genetics
6.
Toxics ; 12(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38250989

ABSTRACT

Benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) are common contaminants in the environment, posing a threat to the ecosystems and human health. Currently, information on the microbial metabolism of BaP and BDE-47 as well as the correlated bacteria is still limited. This research aimed to study the degradation of BaP and BDE-47 by enriched cultures originated from an agricultural soil in Tianjin (North China) and characterize the bacteria involved in the degradation. Two sets of experiments were set up with BaP and BDE-47 (2 mg/L) as the sole carbon source, respectively. The degradation of BaP and BDE-47 occurred at rate constants of 0.030 /d and 0.026 /d, respectively. For BaP, the degradation products included benzo[a]pyrene-9,10-dihydrodiol or its isomers, ben-zo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, and cis-4 (8-hydroxypyrenyl-7)-2-oxo-3-butenoic acid. For BDE-47, the degradation products included 2,2',4-tribrominated diphenyl ether (BDE-17), 2,4-dibrominated diphenyl ether (BDE-7), and hydroxylated dibromodiphenyl ether. The bacterial community structures in the original soil, the BaP culture, and the BDE-47 culture were quite different. The richness and diversity of bacteria in the two cultures were much lower than that in the original soil, and the BaP culture had higher richness and diversity than the BDE-47 culture. In the BaP culture, multiple species such as Niabella (23.4%), Burkholderia-Caballeronia-Paraburkholderia (13.7%), Cupriavidus (8.3%), and Allorhizobi-um-Neorhizobium-Pararhizobium-Rhizobium (8.0%) were dominant. In the BDE-47 culture, an unassigned species in the Rhizobiaceae was dominant (82.3%). The results from this study provide a scientific basis for the risk assessment and bioremediation of BaP and/or BDE-47 in a contaminated environment.

7.
BMC Microbiol ; 24(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38229068

ABSTRACT

BACKGROUND: Mycoplasma pneumoniae (M. pneumoniae) is an important pathogen of community-acquired pneumonia in children. The factors contributing to the severity of illness caused by M. pneumoniae infection are still under investigation. We aimed to evaluate the sensitivity of common M. pneumoniae detection methods, as well as to analyze the clinical manifestations, genotypes, macrolide resistance, respiratory microenvironment, and their relationship with the severity of illness in children with M. pneumoniae pneumonia in Wuhan. RESULTS: Among 1,259 clinical samples, 461 samples were positive for M. pneumoniae via quantitative polymerase chain reaction (qPCR). Furthermore, we found that while serological testing is not highly sensitive in detecting M. pneumoniae infection, but it may serve as an indicator for predicting severe cases. We successfully identified the adhesin P1 (P1) genotypes of 127 samples based on metagenomic and Sanger sequencing, with P1-type 1 (113/127, 88.98%) being the dominant genotype. No significant difference in pathogenicity was observed among different genotypes. The macrolide resistance rate of M. pneumoniae isolates was 96% (48/50) and all mutations were A2063G in domain V of 23S rRNA gene. There was no significant difference between the upper respiratory microbiome of patients with mild and severe symptoms. CONCLUSIONS: During the period of this study, the main circulating M. pneumoniae was P1-type 1, with a resistance rate of 96%. Key findings include the efficacy of qPCR in detecting M. pneumoniae, the potential of IgM titers exceeding 1:160 as indicators for illness severity, and the lack of a direct correlation between disease severity and genotypic characteristics or respiratory microenvironment. This study is the first to characterize the epidemic and genomic features of M. pneumoniae in Wuhan after the COVID-19 outbreak in 2020, which provides a scientific data basis for monitoring and infection prevention and control of M. pneumoniae in the post-pandemic era.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Child , Humans , Mycoplasma pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Molecular Epidemiology , Macrolides/pharmacology , Drug Resistance, Bacterial/genetics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/drug therapy , RNA, Ribosomal, 23S/genetics , Pandemics
9.
J Hazard Mater ; 465: 133137, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056265

ABSTRACT

This study investigated the interaction between the co-pollutants of Benzo[a]pyrene (BaP) and decabromodiphenyl ether (BDE-209) and the bacterial community in soil under flooding anaerobic condition. Three levels of combined pollution (at nominal concentrations of 1, 5, and 25 mg/kg, respectively, for each pollutant), their corresponding sterilized controls, and a blank control (CK) were set up. During the incubation time of 270 days, BaP attenuated more easily than BDE-209. The second-order rate constant of BaP attenuation was negatively correlated with the Ln value of initial BaP concentration. Maximal difference in bacterial community occurred between the CK soil and the highly polluted soil. Desulfomonilaceae, Parcubacteria and Rhodanobacter were probably involved in BaP and BDE-209 degradation, while Nitrosomonadaceae, Phenylobacterium and Mitochondria were significantly suppressed by BaP and BDE-209 or their degrading products. Genes narI, bcrC, fadJ, had, dmpC, narG and CfrA were involved in the degradation of BaP and BDE-209. Impacts of BaP and BDE-209 on metabolisms of carbon, nitrogen and sulfur were not significant. The results provide guidance for the management and remediation of the contaminated soil.


Subject(s)
Environmental Pollutants , Halogenated Diphenyl Ethers , Soil Pollutants , Benzo(a)pyrene/metabolism , Soil Pollutants/metabolism , Soil , Anaerobiosis , Environmental Pollutants/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Soil Microbiology
10.
Int J Infect Dis ; 139: 6-12, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984762

ABSTRACT

OBJECTIVES: We aimed to investigate the continuous changes in respiratory virus epidemics in hospitalized children with lower respiratory tract infections (LRTIs) persisting from January 2019 to December 2022 in Wuhan, China. METHODS: We retrospectively enrolled children with LRTIs admitted to the Wuhan Children's Hospital. Specimens were nasopharyngeal aspirates which had been collected and detected the following microorganisms with direct immunofluorescence: influenza virus types A and B, respiratory syncytial virus, parainfluenza virus types 1-3, and adenovirus. We also analyzed demographic data and laboratory test results. RESULTS: A total of 22,660 patients were enrolled. The total virus detection rate in 2019, 2021, and 2022 significantly declined gradually (36.96% vs 29.47% vs 22.62%, P value < 0.001). All the detected viruses did not follow previously observed seasonal patterns during the COVID-19 pandemic. Children hospitalized for LRTIs were older during the COVID-19 pandemic in contrast to the pre-period, particularly notable in cases attributed to respiratory syncytial virus and parainfluenza virus type 3 infections. CONCLUSIONS: This work adds to our knowledge of the epidemiology characteristics of respiratory viruses spanning the COVID-19 pandemic among children with LRTIs. The circulation of respiratory viruses changed consistently, and active LRTI surveillance in children remains critical for defining the healthcare burden of respiratory viruses.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Infant , Child, Hospitalized , Prevalence , Pandemics , Retrospective Studies , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , China/epidemiology , Respiratory Syncytial Virus Infections/epidemiology
11.
J Chem Phys ; 159(23)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38099554

ABSTRACT

For photosensitive polyurethane systems, reactive diluents are indispensable components whose main role is to reduce the viscosity of the polyurethane prepolymer to meet the requirements of the photocurable 3D printing technology for high fluidity of the precursor solution. Generally, the reactive diluent would be involved in the photocuring reaction, which in turn has a remarkable impact on the mechanical, reaction kinetics, and thermodynamic characteristics of the photosensitive polyurethane system. However, this feature is usually neglected in the study of photosensitive urethane acrylate (PUA) systems, so there is a considerable necessity to investigate the mechanism of active diluents in the photocured reaction of PUA systems. In this work, the effects of α-methyl groups along the chains of diluent molecules on the photoreaction kinetics, photocurable 3D printing, mechanical and mechanical properties, and thermodynamic characteristics of PUAs were investigated employing hydroxyethyl methacrylate and hydroxyethyl acrylate as active diluents, respectively. The relationship between chemical structure and kinetics of PUA systems was also elucidated by using dynamic mechanical analysis tests. The results demonstrated that the α-methyl group blocks the migration of reactive radicals, reduces the efficiency of the photoreaction, and causes an increase in the rigidity and strength of the molecular chain. This study not only revealed the effect of α-methyl on the kinetic mechanical and thermal performance of PUA systems but also paves the way for the development of a new class of photosensitive PUA materials used for the photocurable 3D printing technology.

12.
J Med Chem ; 66(23): 16075-16090, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37972387

ABSTRACT

Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.


Subject(s)
Neuralgia , Neuroinflammatory Diseases , Animals , Mice , Brain/metabolism , Histone Deacetylases/metabolism , Neuralgia/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use
13.
Environ Pollut ; 338: 122691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797922

ABSTRACT

Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.


Subject(s)
Plastics , Water Pollutants, Chemical , Microplastics , Extracellular Polymeric Substance Matrix/chemistry , Water Pollutants, Chemical/analysis , Polymers , Water
14.
Org Biomol Chem ; 21(34): 7005-7017, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37593934

ABSTRACT

A series of novel erianin analogues were designed and synthesized based on the bioisosterism principle by altering the two aromatic rings of erianin, the substituents on the rings and the linker between them. The analogues were evaluated as pyruvate carboxylase (PC) inhibitors in hepatocellular carcinoma cells. It was found that compounds 35 and 36, where fluorine replaces a hydroxyl group, exhibited higher activity than erianin (IC50 value of 17.30 nM) in liver cancer cells with IC50 values of 15.15 nM and 10.05 nM, respectively. Additionally, at a concentration of 10 nM, compounds 35 and 36 inhibited PC with inhibitory rates of 39.10% and 40.15%, respectively, exhibiting nearly identical inhibitory activity to erianin (inhibitory rate of 40.07%). Additionally, a computer simulation docking study demonstrated the basis for better interactions between the receptors and ligands. The fluorine atom of 35 can not only form hydrogen bonds with Lys-1043 (NH⋯F, 2.04 Å), but also form fluorine bonds with the carbonyl groups of Lys-1043 (3.67 Å) and Glu-1046 (3.70 Å), due to the different orientations of the halogens on the B ring warhead. Conversely, the chlorine atom of 34 can only form alkyl hydrophobic interactions with the alkane chain in Lys-1043. Fluorinated compounds 35 and 36 also show better chemical stability and higher log P (clog P = 3.89 for 35 and 36) values than that of erianin (clog P = 3.07), and may be used as candidate compounds for further drug development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Pyruvate Carboxylase , Humans , Carcinoma, Hepatocellular/drug therapy , Computer Simulation , Fluorine , Halogens , Liver Neoplasms/drug therapy , Pyruvate Carboxylase/antagonists & inhibitors , Structure-Activity Relationship
15.
Int J Nanomedicine ; 18: 3211-3230, 2023.
Article in English | MEDLINE | ID: mdl-37337576

ABSTRACT

Purpose: Circulating tumor DNA (ctDNA) is more representative and accurate than biopsy and is also conducive to dynamic monitoring, facilitating accurate diagnosis and prognosis of glioma. Therefore, the present study aimed to establish and validate a novel amplified method for the detection of IDH1 R132H and BRAF V600E, which were associated with the genetic diagnosis of glioma. Patients and Methods: A dual-signal amplification method based on magnetic aggregation and catalytic hairpin assembly (CHA) was constructed for the simultaneous detection of ctDNAs. When target ctDNAs are present, the CHA reaction is initiated and leads to the assembly of Au-Ag nanoshuttles (Au-Ag NSs) onto magnetic beads (MBs). Further enrichment of MBs under an external magnetic field facilitated the dual-signal amplification of SERS. Results: The limit of detection (LOD) for IDH1 R132H and BRAF V600E in serum was as low as 6.01 aM and 5.48 aM. The reproducibility and selectivity of the proposed SERS analysis platform was satisfactory. Finally, the platform was applied to quantify IDH1 R132H and BRAF V600E in the serum of subcutaneous-tumor­bearing nude mice, and the results obtained by SERS were consistent with those from quantitative real-time polymerase chain reaction (qRT-PCR). Conclusion: The present study showed that the dual-signal amplification method is a simple and ultrasensitive strategy for gliomas-associated ctDNAs detection, which is crucial for early diagnosis and dynamic monitoring.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Animals , Mice , Reproducibility of Results , Mice, Nude , Proto-Oncogene Proteins B-raf/genetics , Spectrum Analysis, Raman/methods , DNA, Neoplasm , Limit of Detection , Magnetic Phenomena , Biosensing Techniques/methods , Gold
17.
Virol Sin ; 38(3): 363-372, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37146717

ABSTRACT

Human respiratory syncytial virus (RSV) is a severe threat to children and a main cause of acute lower respiratory tract infections. Nevertheless, the intra-host evolution and inter-regional diffusion of RSV are little known. In this study, we performed a systematic surveillance in hospitalized children in Hubei during 2020-2021, in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing (mNGS). RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant. About 46 high-quality genomes were used for further analyses. A total of 163 intra-host nucleotide variation (iSNV) sites distributed in 34 samples were detected, and glycoprotein (G) gene was the most enriched gene for iSNVs, with non-synonymous substitutions more than synonymous substitutions. Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher, and the population size of RSV groups changed over time. We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B, respectively. This study highlighted the intra-host and inter-host evolution of RSV, and provided some evidences for understanding the evolution of RSV.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/epidemiology , Prevalence , Evolution, Molecular , Phylogeny , China/epidemiology , Genotype
18.
Eur J Med Chem ; 254: 115327, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37098307

ABSTRACT

Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.


Subject(s)
Brain , Histone Deacetylase Inhibitors , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Tissue Distribution
19.
BMC Psychiatry ; 23(1): 294, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118663

ABSTRACT

BACKGROUND: The objective of this study was to examine the relationship of mental health status between self-poisoning suicide patients and their family members, and it also sought to identify potential patient's risk and parental factors for the prediction of suicide attempt, anxiety, and depression. METHODS: In this study, 151 poisoned patients were prospectively included, and they were matched 1:1 with 151 family members. We gathered information on patient's and their matched family member's demographics, lifestyle choices, mental health status, level of intimacy, and history of psychiatry disease. The relationship of patient's and their family member's mental health state was investigated using a correlation matrix. Multivariable analyses (multiple logistic regression) were conducted among patients and their matched family members, to identify potential risk factors for self-poisoning suicide, anxiety, and depression. RESULTS: Of the total patients, 67.55% (102/151) attempted self-poisoning suicide. Poisoned patients had more severe anxiety and depression symptoms than their matched family members, and this difference was even more pronounced among patients with self-poisoning suicide. Generalized anxiety disorder-7 (GAD-7) score for family members was significantly and favorably correlated with patient's GAD-7 score after eliminating non-suicide patients and their matched family members. The patient health questionnaire-9 (PHQ-9) score showed a similar pattern, and the family member's PHQ-9 score was strongly and favorably associated with patient's PHQ-9 and Beck hopelessness scale-20 (BHS-20) score. Multivariable analysis showed that married marital status (P = 0.038), quitting smoking (P = 0.003), sedentary time of 1 to 6 h (P = 0.013), and participation in a sports more than five times per week (P = 0.046) were all significantly associated with a lower risk of suicide by self-poisoning, while a more serious anxiety state (P = 0.001) was significantly associated with a higher risk of self-poisoning suicide. Multivariable analysis demonstrated that, specifically among self-poisoning suicide patients, married marital status (P = 0.011) and no history of psychiatry disease (P < 0.001) were protective factors for anxiety, while divorced or widowed marital status (P = 0.004), a sedentary time of 1 to 3 h (P = 0.022), and a higher monthly income (P = 0.027) were significant contributors to anxiety. The propensity of additional family-matched characteristics to predict patient's suicidality, anxiety, and depression was also examined. CONCLUSIONS: Self-poisoning suicide patients have severe mental health issues. Patients who self-poison have a close connection to their family member's mental health, particularly their levels of anxiety and depression. According to the findings, being married and adopting healthy lifestyle habits, such as quitting smoking and drinking, increasing their physical activity levels, and managing their idle time, are able to help patients with mental health concerns and even suicidal thoughts.


Subject(s)
Family , Suicide, Attempted , Humans , Matched-Pair Analysis , Family/psychology , Suicide, Attempted/psychology , Anxiety Disorders/psychology , Health Status
20.
Environ Int ; 173: 107823, 2023 03.
Article in English | MEDLINE | ID: mdl-36809708

ABSTRACT

Previous studies suggest that exposure to thiamethoxam (TMX) may cause adverse effects to human. However, the distribution of TMX in various organs of human body and the associated risk are little-known. This study aimed to explore the distribution of TMX in human organs by extrapolation from a toxicokinetic experiment in rats and to assess the associated risk based on literature data. The rat exposure experiment was performed using 6-week female SD rats. Five groups of rats were oral-exposed to 1 mg/kg TMX (water as solvent) and executed at 1 h, 2 h, 4 h, 8 h and 24 h after treatment, respectively. The concentrations of TMX and its metabolites in rat liver, kidney, blood, brain, muscle, uterus and urine were measured in different time points using LC-MS. Data on concentrations of TMX in food, human urine and blood as well as human cell-based in vitro toxicity of TMX were collected from the literature. After oral exposure, TMX and its metabolite clothianidin (CLO) were detected in all organs of the rats. The steady-state tissue-plasma partition coefficients of TMX for liver, kidney, brain, uterus and muscle were 0.96, 1.53, 0.47, 0.60 and 1.10, respectively. Based on literature analysis, the concentration of TMX in human urine and blood for general population were 0.06-0.5 ng/mL and 0.04-0.6 ng/mL, respectively. For some people, the concentration of TMX in human urine reached 222 ng/mL. By extraplation from rat experiment, the estimated concentrations of TMX in human liver, kidney, brain, uterus and muscle for general population were 0.038-0.58, 0.061-0.92, 0.019-0.28, 0.024-0.36 and 0.044-0.66 ng/g, respectively, well below the relevant concentrations for cytotoxic endpoints (HQs ≤ 0.012); however, for some people they could be up to 253.44, 403.92, 124.08, 158.40 and 290.40 ng/g, respectively, with very high developmental toxicity (HQ = 5.4). Therefore, the risk for highly exposed people should not be neglected.


Subject(s)
Insecticides , Liver , Humans , Rats , Female , Animals , Thiamethoxam/toxicity , Thiamethoxam/metabolism , Toxicokinetics , Rats, Sprague-Dawley , Liver/metabolism , Brain/metabolism , Insecticides/toxicity , Insecticides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...