Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(4): e2302887, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044324

ABSTRACT

The uterine epithelium undergoes a dramatic spatiotemporal transformation to enter a receptive state, involving a complex interaction between ovarian hormones and signals from stromal and epithelial cells. Redox homeostasis is critical for cellular physiological steady state; emerging evidence reveals that excessive lipid peroxides derail redox homeostasis, causing various diseases. However, the role of redox homeostasis in early pregnancy remains largely unknown. It is found that uterine deletion of Glutathione peroxidase 4 (GPX4), a key factor in repairing oxidative damage to lipids, confers defective implantation, leading to infertility. To further pinpoint Gpx4's role in different cell types, uterine epithelial-specific Gpx4 is deleted by a lactotransferrin (Ltf)-Cre driver; the resultant females are infertile, suggesting increased lipid peroxidation levels in uterine epithelium compromises receptivity and implantation. Lipid peroxidation inhibitor administration failed to rescue implantation due to carbonylation of major receptive-related proteins underlying high lipid reactive oxygen species. Intriguingly, superimposition of Acyl-CoA synthetase long-chain family member 4 (ACSL4), an enzyme that promotes biosynthesis of phospholipid hydroperoxides, along with uterine epithelial GPX4 deletion, preserves reproductive capacity. This study reveals the pernicious impact of unbalanced redox signaling on embryo implantation and suggests the obliteration of lipid peroxides as a possible therapeutic approach to prevent implantation defects.


Subject(s)
Lipid Peroxides , Uterus , Pregnancy , Female , Humans , Lipid Peroxidation , Uterus/metabolism , Epithelium/metabolism , Embryo Implantation
2.
Adv Sci (Weinh) ; 10(7): e2204184, 2023 03.
Article in English | MEDLINE | ID: mdl-36638280

ABSTRACT

Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are the most common human skin disorders. Although corticosteroids have been widely used to treat ACD and AD, the side effects of corticosteroids encourage researchers to explore new immunoregulatory treatments. Here, an immunomodulatory approach based on lipid nanoparticles carrying α-helical configurational melittin (α-melittin-NP) is developed to overcome T cell-mediated inflammatory reactions in an oxazolone (OXA)-induced contact hypersensitivity mouse model and OXA-induced AD-like mouse model. Intradermal injection of low-dose α-melittin-NPs prevents the skin damage caused by melittin administration alone and efficiently targeted lymph nodes. Importantly, melittin and α-melittin-NPs restrain RelB activity in dendritic cells (DCs) and further suppresses dendritic cell activation and maturation in lymph nodes. Furthermore, low-dose α-melittin-NPs leads to relief of antigen recognition-induced effector T cell arrest in the dermis and inhibited allergen-specific T cell proliferation and activation. Significantly, this approach successfully controls Th1-type cytokine release in the ACD model and restricts Th2-type cytokine and IgE release in the AD-like model. Overall, intradermal delivery of low-dose α-melittin-NPs efficiently elicits immunosuppression against T cell-mediated immune reactions, providing a promising therapeutic strategy for treating skin disorders not restricted to the lesion region.


Subject(s)
Dermatitis, Allergic Contact , Dermatitis, Atopic , Nanoparticles , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , T-Lymphocytes , Melitten/adverse effects , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/pathology , Cytokines
3.
Theranostics ; 12(12): 5418-5433, 2022.
Article in English | MEDLINE | ID: mdl-35910800

ABSTRACT

Rational: The complex vascular architecture and diverse immune cells of the liver are critical for maintaining liver homeostasis. However, quantification of the network of liver vasculature and immunocytes at different scales from a single hepatic lobule to an intact liver lobe remains challenging. Methods: Here, we developed a fast and fluorescence-preserving transparency method, denoted liver-CUBIC, for systematic and integrated analysis of the microcirculation and the three-dimensional distribution of dendritic cells (DCs)/macrophages in intact liver lobes. Results: Whole-mount imaging at mesoscale revealed that the hepatic classical lobule preferred the oblate ellipsoid morphology in the mouse liver and exhibited hepatic sinusoids with heterogeneous arrangement and intricate loop structure. Liver fibrosis not only induces sinusoidal density increase but also promotes sinusoidal arrangement with increased sinusoidal branch and loop structure. Meanwhile, we found that CD11c+ DCs followed a lognormal distribution in the hepatic lobules, skewing toward lobular boundary in steady state. CCl4-induced chronic liver injury promoted CD11c+ DC rearrangement at the lobular border before the formation of liver fibrosis. Furthermore, through whole-mount imaging of tumor-immune cell-vascular crosstalk in intact lobes based on liver-CUBIC, we characterized an accumulation of CX3CR1+CCR2+F4/80+ macrophages at metastatic foci in early colorectal liver metastases. Importantly, colorectal cells secrete CCL2 to mobilize CX3CR1+CCR2+F4/80+ macrophages to accumulate at liver micrometastases, and the interruption of CCL2-induced macrophage accumulation inhibits early colonization of metastasis in the liver. Conclusions: Our investigation of the sinusoidal network and DC/macrophage arrangements through the liver-CUBIC approach and whole-mount imaging provide a powerful platform for understanding hepatic circulatory properties and immune surveillance in the liver.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Colorectal Neoplasms/pathology , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Macrophages/pathology , Mice
4.
J Genet Genomics ; 49(12): 1138-1150, 2022 12.
Article in English | MEDLINE | ID: mdl-35483564

ABSTRACT

T cells play a critical role in immunity to protect against pathogens and malignant cells. T cell immunodeficiency is detrimental, especially when T cell perturbation occurs during severe infection, irradiation, chemotherapy, and age-related thymic atrophy. Therefore, strategies that enhance T cell reconstitution provide considerable benefit and warrant intensive investigation. Here, we report the construction of a T cell ablation model in Tg(coro1a:DenNTR) zebrafish via metronidazole administration. The nascent T cells are mainly derived from the hematopoietic cells migrated from the kidney, the functional homolog of bone marrow and the complete recovery time is 6.5 days post-treatment. The cxcr4b gene is upregulated in the responsive hematopoietic cells. Functional interference of CXCR4 via both genetic and chemical manipulations does not greatly affect T lymphopoiesis, but delays T cell regeneration by disrupting hematopoietic migration. In contrast, cxcr4b accelerates the replenishment of hematopoietic cells in the thymus. Consistently, Cxcl12b, a ligand of Cxcr4, is increased in the thymic epithelial cells of the injured animals. Decreased or increased expression of Cxcl12b results in compromised or accelerated T cell recovery, respectively, similar to those observed with Cxcr4b. Taken together, our study reveals a role of CXCR4-CXCL12 signaling in promoting T cell recovery and provides a promising target for the treatment of immunodeficiency due to T cell injury.


Subject(s)
T-Lymphocytes , Zebrafish , Animals , Signal Transduction , Zebrafish/genetics , Zebrafish Proteins/genetics , Cell Movement
5.
Biotechnol J ; 16(9): e2000623, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34053183

ABSTRACT

Chinese hamster ovary (CHO) cells with a high viable cell density (VCD), resilience to culture stress, and the capacity to continuously express recombinant proteins are highly desirable. Phosphatase and tension homology deleted on chromosome ten (PTEN) functions as a key negative regulator of the PI3K/Akt signaling pathway, mediating cell growth and survival. Its oncogenic mutant endows cells with an enhanced proliferation rate and resistance to death. In this study, the role of oncogenic PTEN C124S or G129E on the performance of CHO-K1 and CHO-IgG cells was investigated. Our results showed that CHO-K1 cells stably expressing PTEN C124S or G129E exhibited enhanced proliferation, reduced apoptosis rate, and increased transient expression of therapeutic antibodies compared to the control cells. Moreover, the stable overexpression of PTEN C124S or G129E endowed CHO-IgG cells with higher cell viability, VCD, and antibody titers (yield increased by approximately 0.77-fold) in the fed-batch culture process and enhanced their performance in response to the addition of sodium lactate. Moreover, the engineering of mutated PTEN in CHO-IgG cells did not alter antibody quality. Collectively, our data suggest that mutated PTEN is a potential target for improving the manufacture of therapeutic antibodies.


Subject(s)
Antibody Formation , Phosphatidylinositol 3-Kinases , Animals , Batch Cell Culture Techniques , CHO Cells , Cricetinae , Cricetulus
6.
Front Physiol ; 12: 791848, 2021.
Article in English | MEDLINE | ID: mdl-35145423

ABSTRACT

Diabetic cardiomyopathy (DbCM) is a prevalent disease, characterized by contractile dysfunction and left ventricular hypertrophy. Patients with DbCM have high morbidity and mortality worldwide. Recent studies have identified that pyroptosis, a kind of cell death, could be induced by hyperglycemia involved in the formation of DbCM. This review summarizes the regulatory mechanisms of pyroptosis in DbCM, including NOD-like receptor3, AIM2 inflammasome, long non-coding RNAs, microRNAs, circular RNA, autophagy, and some drugs.

7.
J Biol Chem ; 294(44): 16152-16163, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31511326

ABSTRACT

Ikzf1 is a Krüppel-like zinc-finger transcription factor that plays indispensable roles in T and B cell development. Although the function of Ikzf1 has been studied extensively, the molecular mechanism underlying T lymphopoiesis remains incompletely defined during the embryonic stage. Here we report that the genetic ablation of ikzf1 in mutant zebrafish resulted in abrogated embryonic T lymphopoiesis. This was ascribed to impaired thymic migration, proliferation, and differentiation of hematopoietic stem/progenitor cells (HSPCs). Ccr9a and Irf4a, two indispensable factors in T lymphopoiesis, were the direct targets of Ikzf1 and were absent in the ikzf1 mutants. Genetic deletion of either ccr9a or irf4a in the corresponding mutant embryos led to obvious T cell development deficiency, which was mainly caused by disrupted thymic migration of HSPCs. Restoration of ccr9a in ikzf1 mutants obviously promoted HSPC thymus homing. However, the HSPCs then failed to differentiate into T cells. Additional replenishment of irf4a efficiently induced HSPC proliferation and T cell differentiation. Our findings further demonstrate that Ikzf1 regulates embryonic T lymphopoiesis via Ccr9 and Irf4 and provide new insight into the genetic network of T lymphocyte development.


Subject(s)
Ikaros Transcription Factor/metabolism , Interferon Regulatory Factors/metabolism , Lymphopoiesis/physiology , Receptors, CCR/metabolism , T-Lymphocytes/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cell Differentiation/physiology , Cell Proliferation , Gene Regulatory Networks , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Ikaros Transcription Factor/genetics , Interferon Regulatory Factors/genetics , Lymphopoiesis/genetics , Mutation , Receptors, CCR/genetics , T-Lymphocytes/cytology , Zebrafish Proteins/genetics
9.
Appl Microbiol Biotechnol ; 103(17): 7085-7095, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31292678

ABSTRACT

MicroRNAs (miRNAs) function as important regulators of major cellular processes, such as cell cycle, proliferation, development, and apoptosis. Recently, miRNA engineering of Chinese hamster ovary (CHO) cells has emerged as a promising strategy for enhancing therapeutic antibody production. Previously, we have reported that inhibition of deubiquitinase cylindromatosis (CYLD) remarkably enhanced the therapeutic antibody production in CHO cells. However, the mechanisms regulating CYLD in CHO cells remain elusive. Herein, we demonstrated that miR-106b targets CYLD directly, as shown by a series of bioinformatics analyses and experimental assays. Stable overexpression of miR-106b in CHO cells promoted CHO cell viability and subsequent antibody expression in transient transfection assay. Furthermore, the results in fed-batch culture showed that stable overexpression of miR-106b in a CHO-IgG cell line achieved about 0.66-fold promotion in product titer compared to the parental cells. Meanwhile, overexpression of miR-106b did not affect the quality of antibody. Taken together, our findings highlight the effect of miR-106b inhibition in CYLD synthesis and its function in antibody expression as a new target for improving CHO manufacturing cells.


Subject(s)
Cell Engineering , Deubiquitinating Enzyme CYLD/genetics , Immunoglobulin G/biosynthesis , MicroRNAs/genetics , 3' Untranslated Regions , Animals , Antibodies, Bispecific/biosynthesis , CHO Cells , Cell Survival/genetics , Cricetinae , Cricetulus , Deubiquitinating Enzyme CYLD/metabolism , Down-Regulation , Gene Expression , MicroRNAs/antagonists & inhibitors , Transcription Factor RelA/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
10.
Sci China Life Sci ; 62(9): 1168-1177, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31016533

ABSTRACT

Mammalian target of rapamycin (mTOR), a serine/threonine kinase orchestrating cellular metabolism, is a crucial immune system regulator. However, it remains unclear how mTOR regulates dendritic cell (DC) function in vivo, especially DC-T cell encounters, a critical step for initiating adaptive immune responses. We dynamically visualized DC-T contacts in mouse lymph node using confocal microscopy and established an encounter model to characterize the effect of mTOR inhibition on DC-T cell encounters using DC morphology. Quantitative data showed mTOR inhibition via rapamycin altered DC shape, with an increased form factor (30.17%) and decreased cellular surface area (20.36%) and perimeter (22.43%), which were associated with Cdc42 protein downregulation (52.71%). Additionally, DCs adopted a similar morphological change with Cdc42 inhibition via ZCL278 as that observed with mTOR inhibition. These morphologically altered DCs displayed low encounter rates with T cells. Time-lapse imaging data of T cell motility supported the simulated result of the encounter model, where antigen-specific T cells appeared to reduce arrest in the lymph nodes of rapamycin-pretreated mice relative to the untreated group. Therefore, mTOR inhibition altered DC morphology in vivo and decreased the DC-T cell encounter rate, as well as Cdc42 inhibition. By establishing an encounter model, our study provides an intuitive approach for the early prediction of DC function through morphological quantification of form factor and area.


Subject(s)
Lymph Nodes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Benzamides/metabolism , Cell Communication , Cell Differentiation , Cell Movement , Dendritic Cells/metabolism , Down-Regulation , Female , Mice , Mice, Inbred C57BL , Models, Animal , Sirolimus/metabolism , T-Lymphocytes/metabolism , Thiourea/analogs & derivatives , Thiourea/metabolism , cdc42 GTP-Binding Protein/metabolism
11.
Appl Microbiol Biotechnol ; 102(14): 6081-6093, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29766242

ABSTRACT

Chinese hamster ovary (CHO) cells are promising host engineering cells for industry manufacturing of therapeutic antibodies. However, cell death due to apoptosis remains a huge challenge to augment antibody production, and developing CHO cells with enhanced anti-apoptosis and proliferation ability is fundamental for cell line development and high-yielding bioprocesses. Deubiquitinase cylindromatosis (CYLD) has been proved to be a tumor suppressor by negatively regulating NF-κB and Wnt/ß-catenin signaling pathways. Its mutation or deletion is a common chromosome variation in several types of cancers. Here, we engineered CHO CYLD-/- cells by CRISPR-Cas9 editing technology. These cells displayed stronger cell proliferation and anti-apoptosis ability compared to parental cells. Three antibody expression plasmid kits were transiently transfected into these cells. Our data showed that inactivation of CYLD increased the highest titers of rituximab, Herceptin, and one bispecific antibody by 105, 63, and 228%, respectively. Reversely, overexpression of CYLD could promote cell apoptosis, whereas inhibiting cell proliferation and antibody production. Furthermore, inhibition of CYLD in CHO cells stably expressing an IgG antibody (CHO-IgG) achieved about 50% increase in product titer compared to parental cells. Meanwhile, inhibition of CYLD did not affect the quality of antibody. Thus, our data demonstrated that inactivation of CYLD could promote CHO cell proliferation, anti-apoptosis ability, and subsequent antibody production, suggesting that CYLD is a potential functional target for CHO cell engineering.


Subject(s)
Apoptosis/genetics , Cell Engineering , Cell Proliferation/genetics , Deubiquitinating Enzyme CYLD/genetics , Gene Silencing , Immunoglobulin G/biosynthesis , Animals , Antibodies, Bispecific/biosynthesis , CHO Cells , CRISPR-Cas Systems , Cricetinae , Cricetulus , Gene Deletion , Genes, Tumor Suppressor , Humans , Rituximab/biosynthesis , Trastuzumab/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...