Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
Arch Dermatol Res ; 316(7): 401, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878083

ABSTRACT

BACKGROUND: The adhesive properties of vitiligo melanocytes have decreased under oxidative stress., cytoskeleton proteins can control cell adhesion. Paeoniflorin (PF) was proved to resist hydrogen peroxide (H2O2)-induced oxidative stress in melanocytes via nuclear factorE2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. OBJECTIVES: This study was to investigate whether PF exerts anti-oxidative effect through influencing cytoskeleton markers or potential signaling pathway. METHODS: Human Oxidative Stress Plus array was used to identify the differentially expressed genes between H2O2 + PF group and H2O2 only group, in PIG1 and PIG3V melanocyte cell lines respectively. Western blotting was used to verify the PCR array results and to test the protein expression levels of cytoskeleton markers including Ras homolog family member A (RhoA), Rho-associated kinase 1 (ROCK1) and antioxidative marker Nrf2. Small interfering RNA was used to knock down PDZ and LIM domain 1 (PDLIM1). RESULTS: PF increased the expressions of PDLIM1, RhoA and ROCK1 in H2O2-induced PIG1, in contrast, decreased the expressions of PDLIM1 and ROCK1 in H2O2-induced PIG3V. Knockdown of PDLIM1 increased the expressions of RhoA and Nrf2 in PF-pretreated H2O2-induced PIG1, and ROCK1 and Nrf2 in PF-pretreated H2O2-induced PIG3V. CONCLUSIONS: PF regulates RhoA/ROCK1 and Nrf2 pathways in PDLIM1-dependent or independent manners in H2O2-induced melanocytes. In PIG1, PF promotes PDLIM1 to inhibit RhoA/ROCK1 pathway or activates Nrf2/HO-1 pathway, separately. In PIG3V, PF directly downregulates ROCK1 in PDLIM1-independent manner or upregulates Nrf2 dependent of PDLIM1.


Subject(s)
Glucosides , Hydrogen Peroxide , LIM Domain Proteins , Melanocytes , Monoterpenes , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , NF-E2-Related Factor 2/metabolism , rho-Associated Kinases/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Humans , Glucosides/pharmacology , Oxidative Stress/drug effects , rhoA GTP-Binding Protein/metabolism , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Monoterpenes/pharmacology , Cell Line
2.
Cytokine ; 141: 155444, 2021 05.
Article in English | MEDLINE | ID: mdl-33529888

ABSTRACT

BACKGROUND: Rosacea is a chronic inflammatory skin disease whose psychological consequences severely affect patient's quality of life. OBJECTIVE: To identify candidate genes of rosacea for potential development of new target therapies. METHODS: Gene Expression Omnibus datasets were retrieved to obtain differentially expressed genes (DEGs) between rosacea patients and healthy controls. Gene ontology (GO) analyses were used to identify functions of candidate genes. Related signaling pathways of DEGs were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis. Protein-protein interaction (PPI) networks were applied using search tools for the retrieval of interacting genes/proteins and modulations involving PPI networks were evaluated with use of the MCODE app. RESULTS: Samples from 19 rosacea patients and 10 healthy controls of dataset GSE65914 were enrolled. A total of 215 DEGs, 115 GO terms and 6 KEGG pathways were identified. A total of 182 nodes and 456 edges were enriched in PPI networks. Maximal clusters showed 15 central nodes and 96 edges. The toll-like receptor (TLR) signaling pathway was the most significant pathway detected and 5 DEGs were identified as candidate genes which included TLR2, C-C motif chemokine (CCL) 5, C-X-C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11. The results were verified in rosacea patients with use of real-time polymerase chain reaction and immunohistochemistry. Cell-type enrichment analysis revealed 8 lymphocytes that were enriched in rosacea patients. CONCLUSIONS: The results suggest that both innate and adaptive immune responses were involved in the etiology of rosacea. Five DEGs in the TLR signaling pathway may serve as potential therapeutic target genes.


Subject(s)
Chemokines , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Rosacea , Toll-Like Receptor 2 , Chemokines/genetics , Chemokines/immunology , Humans , Rosacea/genetics , Rosacea/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology
3.
J Cell Mol Med ; 24(17): 10027-10041, 2020 09.
Article in English | MEDLINE | ID: mdl-32790210

ABSTRACT

Both SIRT1 and UVA radiation are involved in cellular damage processes such as apoptosis, senescence and ageing. MicroRNAs (miRNAs) have been reported to be closely related to UV radiation, as well as to SIRT1. In this study, we investigated the connections among SIRT1, UVA and miRNA in human skin primary fibroblasts. Our results showed that UVA altered the protein level of SIRT1 in a time point-dependent manner. Using miRNA microarray, bioinformatics analysis, we found that knocking down SIRT1 could cause up-regulation of miR-27a-5p and the latter could down-regulate SMAD2, and these results were verified by qRT-PCR or Western blot. Furthermore, UVA radiation (5 J/cm2 ), knocking down SIRT1 or overexpression of miR-27a-5p led to increased expression of MMP1, and decreased expressions of COL1 and BCL2. We also found additive impacts on MMP1, COL1 and BCL2 under the combination of UVA radiation + Sirtinol (SIRT1 inhibitor), or UVA radiation + miR-27a-5p mimic. SIRT1 activator resveratrol could reverse damage changes caused by UVA radiation. Besides, absent of SIRT1 or overexpression of miR-27a-5p increased cell apoptosis and induced cell arrest in G2/M phase. Taken together, these results demonstrated that UVA could influence a novel SIRT1-miR-27a-5p-SMAD2-MMP1/COL1/BCL2 axis in skin primary fibroblasts, and may provide potential therapeutic targets for UVA-induced skin damage.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/radiation effects , Proteins/metabolism , Signal Transduction/radiation effects , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays/adverse effects , Adolescent , Adult , Apoptosis/radiation effects , Cell Cycle Checkpoints/radiation effects , Cell Division/radiation effects , Cells, Cultured , Down-Regulation/radiation effects , G2 Phase/radiation effects , Humans , Up-Regulation/radiation effects , Young Adult
4.
Front Pharmacol ; 11: 736, 2020.
Article in English | MEDLINE | ID: mdl-32499710

ABSTRACT

Photodamages caused by UVA radiation induced oxidative injuries are closely related to photoaging and skin cancer. Paeoniflorin (PF), extracted from the root of Paeonia lactiflora, has been reported to be an effective antioxidant. PLIN2, known as adipose differentiation-related protein, has been previously involved in the regulation of oxidative stress. In this study, we were sought to investigate the photo-protective property of PF and PLIN2 in UVA-radiated human dermal fibroblasts (HDFs). HDFs were pre-treated with PF (800 µM) followed by UVA radiation (22.5 J/cm2). MTS activity, cell apoptosis, ROS, MDA, and SOD were detected, respectively. The expressions of Nrf2, HO-1, NQ-O1, and PLIN2 were determined using RT-qPCR or western blot. Nrf2 was silenced by siRNA, and PLIN2 was overexpressed via lentiviral transduction. Comparing to the UVA radiation, PF pre-treatment could prominently increase the MTS activity, decrease cell apoptosis, reduce the generations of ROS and MDA, increase the activity of SOD and increase the expression of Nrf2 and its target genes HO-1 and NQ-O1. When Nrf2 was knocked down, PF lost above protective properties. In addition, UVA induced oxidative stress led to upregulation of PLIN2 and the latter could be decreased by PF. Overexpression of PLIN2 improved MTS activity and reduced MDA level in HDFs. The combination of PLIN2 overexpression and PF pre-treatment corporately inhibited UVA-induced injury. Besides, we also found that PF and PLIN2 had a compensatory protection against UVA induced oxidative stress. In conclusion, our study demonstrated that UVA induced photodamages could be inhibited by PF via Nrf2/HO-1/NQ-O1 signaling pathway or by PLIN2, and the combination of PLIN2 overexpression and PF played additive effects against UVA-related oxidative stress.

5.
Zhong Yao Cai ; 34(6): 922-6, 2011 Jun.
Article in Chinese | MEDLINE | ID: mdl-22017008

ABSTRACT

OBJECTIVE: To investigate the effect and mechanism of Sibiraea angustata on lipid metabolism in hight-fatted SD rats. METHODS: After the obese model was built,Sibiraea angustata was administrated intragastrically to obese rats for 8 weeks. Peeled off fat around kidneys and made pathological tissue sections. The number and size of adipocytes were detected. The levels of adiponectin, adipoR2, AMPK, and PPARgamma mRNA in adipose tissue were detected by RT-PCR. AMPK protein expression in adipose tissue were detected by Western Blot. RESULTS: Compared with the model group, the diameter of adipocytes were reduced while the number increased after adminiseration of Sibiraea angustata for 8 weeks. The levels of adiponectin, adipoR2, AMPK and PPARgamma mRNA were increased siginficantly. The expression of AMPK protein was also up-regulated significantly. CONCLUSION: Sibiraea angustata has anti-obesity effect. The mechanism may be related to the adiponectin signal transduction pathway.


Subject(s)
Adiponectin/metabolism , Adipose Tissue/metabolism , Drugs, Chinese Herbal/pharmacology , Obesity/metabolism , Rosaceae/chemistry , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Adiponectin/genetics , Adipose Tissue/drug effects , Animals , Anti-Obesity Agents/pharmacology , Dietary Fats/administration & dosage , Gene Expression Regulation/drug effects , Male , Obesity/pathology , Plant Leaves/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL