Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 185: 108532, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422876

ABSTRACT

Nanoplastics (NPs) continue to accumulate in global aquatic and terrestrial systems, posing a potential threat to human health through the food chain and/or other pathways. Both in vivo and in vitro studies have confirmed that the liver is one of the main organs targeted for the accumulation of NPs in living organisms. However, whether exposure to NPs induces size-dependent disorders of liver lipid metabolism remains controversial, and the reversibility of NPs-induced hepatotoxicity is largely unknown. In this study, the effects of long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs) on lipid accumulation were investigated in terms of autophagy and lysosomal mechanisms. The findings indicated that hepatic lipid accumulation was more pronounced in mice exposed to 100 nm PS-NPs compared to 500 nm PS-NPs. This effect was effectively alleviated after 50 days of self-recovery for 100 nm and 500 nm PS-NPs exposure. Mechanistically, although PS-NPs exposure activated autophagosome formation through ERK (mitogen-activated protein kinase 1)/mTOR (mechanistic target of rapamycin kinase) signaling pathway, the inhibition of Rab7 (RAB7, member RAS oncogene family), CTSB (cathepsin B), and CTSD (cathepsin D) expression impaired lysosomal function, thereby blocking autophagic flux and contributing to hepatic lipid accumulation. After termination of PS-NPs exposure, lysosomal exocytosis was responsible for the clearance of PS-NPs accumulated in lysosomes. Furthermore, impaired lysosomal function and autophagic flux inhibition were effectively alleviated. This might be the main reason for the alleviation of PS-NPs-induced lipid accumulation after recovery. Collectively, we demonstrate for the first time that lysosomes play a dual role in the persistence and reversibility of hepatotoxicity induced by environmental relevant doses of NPs, which provide novel evidence for the prevention and intervention of liver injury associated with nanoplastics exposure.


Subject(s)
Chemical and Drug Induced Liver Injury , Nanoparticles , Water Pollutants, Chemical , Humans , Animals , Mice , Microplastics , Polystyrenes/toxicity , Lysosomes , Lipids
2.
J Hazard Mater ; 468: 133796, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38377905

ABSTRACT

Haloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E2]) were measured among 449 Chinese men. Moreover, in vitro experiments, designed to simulate the real-world scenarios of human exposure, were conducted to assess testosterone synthesis in the Leydig cell line MLTC-1 and testosterone metabolism in the hepatic cell line HepG2 in response to low-dose HAA exposure. The DCAA and TCAA urinary concentrations were found to be positively associated with urinary T, P, and E2 levels (all p < 0.001), but negatively associated with the ratio of urinary T to E2 (p < 0.05). Combined with in vitro experiments, the results suggest that environmentally-relevant doses of HAA stimulate sex hormone synthesis and steroidogenesis pathway gene expression in MLTC-1 cells. In addition, the inhibition of the key gene CYP3A4 involved in the testosterone phase Ⅰ catabolism, and induction of the gene UGT2B15 involved in testosterone phase Ⅱ glucuronide conjugation metabolism along with the ATP-binding cassette (ABC) transport genes (ABCC4 and ABCG2) in HepG2 cells could play a role in elevation of urinary hormone excretion upon low-dose exposure to HAAs. Our novel findings highlight that exposure to HAAs at environmentally-relevant concentrations is associated with increased synthesis and excretion of sex hormones in males, which potentially provides an alternative approach involving urinary hormones for the noninvasive evaluation of male reproductive health following exposure to DBPs.


Subject(s)
Disinfection , Drinking Water , Humans , Male , Trichloroacetic Acid/toxicity , Dichloroacetic Acid/analysis , Dichloroacetic Acid/urine , Steroids , Testosterone
3.
Sci Total Environ ; 892: 164761, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37315596

ABSTRACT

Environmental arsenic (As) exposure has been associated with gestational diabetes mellitus (GDM) risk. Our recent study found that GDM was positively associated with urinary As3+ level while negatively correlated to As5+. However, the mechanisms underlying the association between arsenic species and GDM remain largely unknown. In the present study, through the measurement of urinary arsenic species and metabolome analysis in 399 pregnant women, we aimed to identify the metabolic biomarkers that may link arsenic exposure to GDM based on a novel systems epidemiology strategy termed meet-in-metabolite-analysis (MIMA). The metabolomics analysis revealed that 20 and 16 urinary metabolites were relevant to arsenic exposure and GDM, respectively. Among them, 12 metabolites were identified to be both arsenic- and GDM-related, which are mainly involved in purine metabolism, one­carbon metabolism (OCM) and glycometabolism. Moreover, it was further showed that the regulation of thiosulfate (AOR: 2.52; 95 % CI: 1.33, 4.77) and phosphoroselenoic acid (AOR: 2.35; 95 % CI: 1.31, 4.22) could significantly contribute to the negative association between As5+ and GDM. Considering the biological functions of these metabolites, it is suggested that As5+ may reduce GDM risk by disturbing OCM in the pregnant women. These data will provide novel insights into the mechanism of action of environmental arsenic exposure on GDM incidence from the aspect of metabolism disorder.


Subject(s)
Arsenic , Diabetes, Gestational , Pregnancy , Humans , Female , Diabetes, Gestational/epidemiology , Arsenic/urine , Pregnant Women , Cross-Sectional Studies , East Asian People , Biomarkers/metabolism
4.
J Hazard Mater ; 445: 130623, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37056006

ABSTRACT

Autophagy was involved in vascular endothelial injury caused by PM2.5, which aggravated the pathogenesis of cardiovascular diseases. However, major toxic components and underlying mechanism responsible for PM2.5-induced autophagy remain unclear. In this study, the effects of water-extracted PM2.5 (WE-PM2.5) on autophagy in human umbilical vein endothelial cells (HUVEC) were studied. Our results showed WE-PM2.5 promoted autophagosome initiation and formation, meanwhile, lysosomal function was impaired, which further caused autophagic flux blockage in HUVEC cells. Furthermore, removal of metals alleviated WE-PM2.5-induced autophagic flux blockage, while the artificial metal mixture reproduced the WE-PM2.5 response. Mechanistically, ROS regulated autophagy-related proteins evidenced by BECN1, LC3B and p62 expression reversed by NAC pretreatment in WE-PM2.5-exposed cells. WE-PM2.5 also increased TXNIP expression mediated by ROS; moreover, knockdown of TXNIP in WE-PM2.5-exposed cells decreased BECN1 and LC3B expression, but had little effects on the expression of p62, CTSB, and CTSD, indicating WE-PM2.5-induced TXNIP was involved in autophagosome initiation and formation rather than autophagic degradation. Collectively, WE-PM2.5-induced ROS not only promoted autophagosome initiation and formation, but also inhibited autophagic degradation. However, as the downstream molecule of ROS, TXNIP was only involved in autophagosome initiation and formation. Importantly, WE-PM2.5-bound metals were largely responsible for autophagic flux blockage in HUVEC cells.


Subject(s)
Autophagosomes , Autophagy , Humans , Human Umbilical Vein Endothelial Cells , Reactive Oxygen Species/metabolism , Autophagosomes/metabolism , Autophagosomes/pathology , Metals/metabolism , Particulate Matter/toxicity , Particulate Matter/metabolism , Carrier Proteins/metabolism
5.
J Appl Toxicol ; 43(2): 262-271, 2023 02.
Article in English | MEDLINE | ID: mdl-35978532

ABSTRACT

Ubiquitous micro(nano)plastics (MNPs) are emerging environmental pollutants, which pose a potential threat to human health. When MNPs enter the blood circulatory system, vascular endothelium is one of the most important target organs that directly interact with the MNPs. However, little is known about the cytotoxicity of MNPs to vascular endothelial cells. In this study, we investigated the uptake and cytotoxic effects of polystyrene MNPs with a particle size of 1 µm (1-µm PS-MNPs) on human umbilical vein endothelial cells (HUVECs) in vitro. Our study found that interaction between HUVECs and 1-µm PS-MNPs was at a very low level. Even at the high exposure concentration of 25 µg/mL, the percentage of HUVECs combined with fluorescent 1-µm PS-MNPs was only 3.80% using flow cytometry analysis. Moreover, there were no significant differences in inflammation, autophagy, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) release, and adhesion molecule expression following exposure to 1-µm PS-MNPs (5, 10, and 25 µg/mL) for 48 h, except for a remarkable decrease in cell viability at the extremely high concentration of 100 µg/mL. Herein, 1-µm PS-MNPs showed a low level of acute toxicity to HUVECs in vitro, and we expect these results contribute to the further risk assessment of MNPs on human health.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Microplastics/toxicity , Polystyrenes/toxicity , Plastics/metabolism , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/metabolism
6.
J Hazard Mater ; 421: 126770, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34358975

ABSTRACT

Ubiquitous nanoplastics (NPs) increase exposure risks to humans through the food chain and/or other ways. However, huge knowledge gaps exist regarding the fate and adverse impact of NPs on the human cardiovascular system. Autophagy is an important catabolic pathway that disposes of cytoplasmic waste through the lysosomes. In this study, we pursued to determine the interaction and autophagy effect of polystyrene nanoplastics (PS-NPs) (100 and 500 nm in size) on human umbilical vein endothelial cells (HUVECs). The results showed both sizes of PS-NPs interacted with almost all the treated HUVECs in a time- and concentration-dependent manner, and 500 nm PS-NPs were only bound to the surface of cell membranes, whereas 100 nm PS-NPs were taken up by HUVECs and aggregated in the cytoplasm. Furthermore, exposure to 25 µg/mL of 500 nm PS-NPs for 48 h significantly increased lactate dehydrogenase release from HUVECs, while internalized 100 nm PS-NPs not only caused cell membrane damage, but also induced autophagy initiation and autophagosome formation. By a mCherry-GFP-LC3 lentivirus infection assay, we also demonstrated that autophagic flux level was impaired in response to 100 nm PS-NPs. Herein, our results provide new insight into the size-dependent internalization and autophagy response to PS-NPs in HUVECs.


Subject(s)
Nanoparticles , Polystyrenes , Autophagy , Human Umbilical Vein Endothelial Cells , Humans , Lysosomes , Microplastics , Nanoparticles/toxicity
7.
Arch Toxicol ; 92(3): 1023-1035, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29222745

ABSTRACT

Exposure to ambient particulate matter (PM) has been linked to the increasing incidence and mortality of lung cancer, but the principal toxic components and molecular mechanism remain to be further elucidated. In this study, human lung adenocarcinoma A549 cells were treated with serial concentrations of water-extracted PM10 (WE-PM10) collected from Beijing, China. Our results showed that exposure to 25 and 50 µg/ml of WE-PM10 for 48 h significantly suppressed miR-26a to upregulate lin-28 homolog B (LIN28B), and in turn activated interleukin 6 (IL6) and signal transducer and activator of transcription 3 (STAT3) in A549 cells, subsequently contributing to enhanced epithelial-mesenchymal transition and accelerated migration and invasion. In vivo pulmonary colonization assay further indicated that WE-PM10 enhanced the metastatic ability of A549 cells. In addition, luciferase reporter assay demonstrated that 3' untranslated region of LIN28B was a direct target of miR-26a. Last but not the least, the key toxic contribution of metals in WE-PM10 was confirmed by the finding that removal of metals through chelation significantly rescued WE-PM10-mediated inflammatory, carcinogenic and metastatic responses. Taken together, miR-26a could act as the tumor suppressor in PM10-related lung cancer, and PM10-bound metals promoted lung cancer cell metastasis through downregulation of miR-26a that directly mediated LIN28B expression.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , Particulate Matter/toxicity , RNA-Binding Proteins/genetics , A549 Cells , Animals , Cell Movement/drug effects , Cell Movement/genetics , Humans , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Metals/analysis , Metals/toxicity , Mice, Inbred BALB C , Particulate Matter/chemistry , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
8.
Article in English | MEDLINE | ID: mdl-27314375

ABSTRACT

An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches.


Subject(s)
Air Pollutants/analysis , Aldehydes/analysis , Benzene Derivatives/analysis , Motor Vehicles , Volatile Organic Compounds/analysis , Air Conditioning , Air Pollution, Indoor/analysis , China , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...