Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(8): 7845-7857, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872993

ABSTRACT

Synthetic pigment pollutants caused by the rapid development of the modern food industry have become a serious threat to people's health and quality of life. Environmentally friendly ZnO-based photocatalytic degradation exhibits satisfactory efficiency, but some shortcomings of large band gap and rapid charge recombination reduce the removal of synthetic pigment pollutants. Here, carbon quantum dots (CQDs) with unique up-conversion luminescence were applied to decorate ZnO nanoparticles to effectively construct the CQDs/ZnO composites via a facile and efficient route. The ZnO nanoparticles with a spherical-like shape obtained from a zinc-based metal organic framework (zeolitic imidazolate framework-8, ZIF-8) were coated by uniformly dispersive quantum dots. Compared with single ZnO particles, the obtained CQDs/ZnO composites exhibit enhanced light absorption capacity, decreased photoluminescence (PL) intensity, and improved visible-light degradation for rhodamine B (RhB) with the large apparent rate constant (k app). The largest k app value in the CQDs/ZnO composite obtained from 75 mg of ZnO nanoparticles and 12.5 mL of the CQDs solution (∼1 mg·mL-1) was 2.6 times that in ZnO nanoparticles. This phenomenon may be attributed to the introduction of CQDs, leading to the narrowed band gap, an extended lifetime, and the charge separation. This work provides an economical and clean strategy to design visible-light-responsive ZnO-based photocatalysts, which is expected to be used for the removal of synthetic pigment pollutants in food industry.

2.
Microbiol Spectr ; 11(1): e0209622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475917

ABSTRACT

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.


Subject(s)
Fabaceae , Vigna , Arachis/metabolism , Symbiosis , Bacterial Proteins/genetics
3.
Article in English | MEDLINE | ID: mdl-36554851

ABSTRACT

With increasing numbers of crashes and injuries, understanding traffic accident spatial patterns and identifying blackspots is critical to improve overall road safety. This study aims at detecting blackspots using optimized hot spot analysis (OHSA). Traffic accidents were classified by their participants and severity to explore the relationship between blackspots and different types of accidents. Based on the outputs of incremental spatial autocorrelation, OHSA was then implemented on different types of accidents. Finally, the performance of OHSA in evaluating the road safety level of the proposed RBT index are examined using a binary correlation analysis (i.e., R2 = 0.89). The results show that: (1) The optimal scale distance varies from 0.6 km to 2.8 km and is influenced by the distance of the travel mode. (2) Central cities, with 54.6% of the total accidents, experiences more rigorous challenges regarding traffic safety than satellite cities. (3) There are many types of black spots in vulnerable communities, but in some specific areas, there are only black spots of non-motor vehicle accidents. Considering the practical significance of the above results, policy makers and traffic engineers are expected to give higher attention to central cities and vulnerable communities or prioritize the implementation of relevant optimization measures.


Subject(s)
Accidents, Traffic , Travel , Humans , Cities , Urbanization , Spatial Analysis
4.
Microbiol Res ; 265: 127188, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152611

ABSTRACT

Type I peanut bradyrhizobial strains can establish efficient symbiosis in contrast to symbiotic incompatibility induced by type II strains with mung bean. The notable distinction in the two kinds of key symbiosis-related regulators nolA and nodD close to the nodABCSUIJ operon region between these two types of peanut bradyrhizobia was found. Therefore, we determined whether NolA and NodD proteins regulate the symbiotic adaptations of type I strains to different hosts. We found that NodD1-NolA synergistically regulated the symbiosis between the type I strain Bradyrhizobium zhanjiangense CCBAU51778 and mung bean, and NodD1-NodD2 jointly regulated nodulation ability. In contrast, NodD1-NolA coordinately regulated nodulation ability in the CCBAU51778-peanut symbiosis. Meanwhile, NodD1 and NolA collectively contributes to competitive nodule colonization of CCBAU51778 on both hosts. The Fucosylated Nod factors and intact type 3 secretion system (T3SS), rather than extra nodD2 and full-length nolA, were critical for effective symbiosis with mung bean. Unexpectedly, T3SS-related genes were activated by NodD2 but not NodD1. Compared to NodD1 and NodD2, NolA predominantly inhibits exopolysaccharide production by promoting exoR expression. Importantly, this is the first report that NolA regulates rhizobial T3SS-related genes. The coordinated regulation and integration of different gene networks to fine-tune the expression of symbiosis-related genes and other accessory genes by NodD1-NolA might be required for CCBAU51778 to efficiently nodulate peanut. This study shed new light on our understanding of the regulatory roles of NolA and NodD proteins in symbiotic adaptation, highlighting the sophisticated gene networks dominated by NodD1-NolA.


Subject(s)
Bradyrhizobium , Fabaceae , Arachis/genetics , Arachis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Symbiosis/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
5.
Front Cell Dev Biol ; 10: 962990, 2022.
Article in English | MEDLINE | ID: mdl-36092716

ABSTRACT

As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...