Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters











Publication year range
1.
Insects ; 15(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39194774

ABSTRACT

Diptera and Lepidoptera species have the highest levels of insecticide resistance, and the mechanism of drug resistance has been studied in detoxification metabolism genes such as P450, GST, EST, and ABC. Since Bactrocera dorsalis are resistant to a variety of chemicals, the pattern and mechanism of resistance in Bactrocera dorsalis have been investigated from a variety of aspects such as detoxification metabolism genes, detoxification enzymes, intestinal symbiotic bacteria, and synergists in the world. In this study, 51 species and 149 detoxification metabolism genes were annotated in the Suppression Subtractive Hybridization (SSH) library, and 12 candidate genes related to beta-cypermethrin resistance were screened and quantitatively expressed in this library. Two genes were found to be upregulated in the egg stage, three genes in the larval stage, one gene in the pupal stage, and five genes in the adult stage, and four genes were found to be upregulated in the midgut and the malacca ducts in the midgut. The expression of cyp6g1, cyp6a22, GST-Epsilon9, and Trypsin-4 genes was upregulated in resistant strains, with the most obvious upregulation occurring in the midgut and the Malpighian tubules. These results provide new insights into the study of pesticide resistance in quarantine insects.

2.
Insects ; 15(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39194825

ABSTRACT

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is a global economic pest that poses a serious threat to the fruit industry. In the southwest of China, Yunnan Province sustains a severe infestation of B. dorsalis. An automated monitoring system designed for B. dorsalis was employed in this study to elucidate the annual population dynamics of B. dorsalis in four counties: Yuanjiang, Huaping, Guangnan, and Ludian in Yunnan. The system utilizes sex parapheromone and image recognition technology. The data uploaded by the device are used to analyze the annual population dynamics of B. dorsalis in different regions. The results showed that the populations of adult B. dorsalis in all four counties peaked twice annually, with Yuanjiang experiencing the earliest peak periods, followed by Huaping, Guangnan, and Ludian. Adult B. dorsalis occurred in Yuanjiang throughout the year, and Yuanjiang had the highest number of B. dorsalis monitored. In Huaping, adult B. dorsalis occurred in March-December and was highly active, with a high population density in 2019. Bactrocera dorsalis did not occur in December in Guangnan but only in May-October in Ludian. Bactrocera dorsalis abundance was correlated with temperature in all four areas. The outcomes of this experiment provide a practical foundation for developing control strategies targeting B. dorsalis in various orchards across each county.

3.
Commun Biol ; 7(1): 808, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961219

ABSTRACT

Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.


Subject(s)
Arylalkylamine N-Acetyltransferase , Inactivation, Metabolic , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Arylalkylamine N-Acetyltransferase/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Aedes/genetics , Aedes/metabolism , Insecticides/pharmacology , Gastrointestinal Tract/metabolism
4.
Insects ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39057264

ABSTRACT

How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2-3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect's food source and gut bacteria may have an important effect on insect invasions.

5.
Insects ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921155

ABSTRACT

Fruit flies cause substantial economic damage, and their management relies primarily on chemical insecticides. However, pesticide resistance has been reported in several fruit fly species, the mitigation of which is crucial to enhancing fruit fly control. Here, we assess the toxicity of a novel insecticide (fluralaner) and a common insecticide (dinotefuran) against three fruit fly species, Bactrocera dorsalis (Hendel), Bactrocera cucurbitae (Coquillett), and Bactrocera tau (Walker). Both pesticides exhibit robust lethal and sublethal effects against all three fruit fly species, with fluralaner being more potent. Fluralaner and dinotefuran suppress the reproductive capacities and survival rates of fruit flies. However, at the 50% lethal concentration, fluralaner stimulates the reproductive capacity of B. dorsalis and the survival rate of B. tau. Fluralaner also causes significant transgenerational effects, impacting the offspring hatching rate of B. cucurbitae and B. tau and reducing the proportion of female offspring. Thus, both pesticides exhibit high potential for controlling fruit flies. However, their application should be tailored according to species variations and the diverse effects they may induce. Collectively, the findings of this study outline the sublethal effects of two insecticides against fruit flies, helping to optimize their application to ensure the effective management of insecticide resistance.

6.
Front Microbiol ; 15: 1362089, 2024.
Article in English | MEDLINE | ID: mdl-38756732

ABSTRACT

Entomopathogenic fungi (EPF) are economical and environmentally friendly, forming an essential part of integrated pest management strategies. We screened six strains of Beauveria bassiana (B1-B6) (Hypocreales: Cordycipitaceae), of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further assessed the biological characteristics of strain B4 and the environmental factors influencing its ability to infect B. dorsalis. We also evaluated the effects of B4 on two of the natural predators of B. dorsalis. We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were achieved at a relative humidity of 91-100% and a temperature of 25°C. Among the six insecticides commonly used for B. dorsalis control, 1.8% abamectin emulsifiable concentrate had the strongest inhibitory effect on B4 strain germination. B4 spraying affected both natural enemies (Amblyseius cucumeris and Anastatus japonicus), reducing the number of A. cucumeris and killing A. japonicus adults. We found a valuable strain of EPF (B4) that is virulent against many life stages of B. dorsalis and has great potential for the biological control of B. dorsalis. We also provide an important theoretical and practical base for developing a potential fungicide to control B. dorsalis.

7.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734116

ABSTRACT

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Subject(s)
Acetyltransferases , Ovary , Tephritidae , Animals , Ovary/growth & development , Ovary/metabolism , Ovary/enzymology , Female , Tephritidae/genetics , Tephritidae/enzymology , Tephritidae/growth & development , Tephritidae/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Agmatine/metabolism
8.
J Econ Entomol ; 117(3): 825-833, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38634604

ABSTRACT

In an ant colony, a large number of nestmates with a similar gene pool coexist, making them more vulnerable to pathogenic attacks. These pathogens influence the behavior and physiology of the fire ant Solenopsis invicta Buren. Here, we evaluated the impact of entomopathogenic fungi (EPF) Metarhizium anisopliae on the behavior (locomotion and foraging) and physiology (biological molecules, anti-fungal activity, and survival) of S. invicta. Distance traveled and velocity significantly decreased, while turn angle and angular velocity significantly increased in ants exposed to a higher concentration of M. anisopliae compared to ants exposed to control after 36 h, which showed disturbed locomotion. Fungus infection significantly affected the foraging behavior of ants. Fungus-exposed ants spent significantly less time in the food zone (area with food) than in the inner zone (area without food). The activities of 4 enzymes, peroxidase, glutathione-S-transferase, hydrogen peroxide (H2O2), and carboxylesterase were significantly decreased. In contrast, catalase and anti-fungal activities were increased after fungal exposure compared to the control. The activity of acetylcholinesterase, which hydrolyses the important neurotransmitter acetylcholine, also decreased after fungal application compared to the control. Survival of ants was also significantly reduced after fungus infection compared to the control. Our findings help to understand the influence of M. anisopliae on the behavior and physiology of S. invicta, which will help in the management of S. invicta using the EPF M. anisopliae.


Subject(s)
Fire Ants , Metarhizium , Animals , Feeding Behavior , Fire Ants/microbiology , Fire Ants/physiology , Locomotion , Metarhizium/physiology
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
10.
Cell Mol Biol Lett ; 29(1): 42, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539075

ABSTRACT

Elucidating the intricate interactions between viral pathogens and host cellular machinery during infection is paramount for understanding pathogenic mechanisms and identifying potential therapeutic targets. The RNA modification N6-methyladenosine (m6A) has emerged as a significant factor influencing the trajectory of viral infections. Hence, the precise and quantitative mapping of m6A modifications in both host and viral RNA is pivotal to understanding its role during viral infection. With the rapid advancement of sequencing technologies, scientists are able to detect m6A modifications with various quantitative, high-resolution, transcriptome approaches. These technological strides have reignited research interest in m6A, underscoring its significance and prompting a deeper investigation into its dynamics during viral infections. This review provides a comprehensive overview of the historical evolution of m6A epitranscriptome sequencing technologies, highlights the latest developments in transcriptome-wide m6A mapping, and emphasizes the innovative technologies for detecting m6A modification. We further discuss the implications of these technologies for future research into the role of m6A in viral infections.


Subject(s)
Adenosine/analogs & derivatives , RNA , Virus Diseases , Humans , RNA/genetics , Transcriptome
11.
Insect Mol Biol ; 33(3): 283-292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411032

ABSTRACT

Although the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects. Here, we describe a highly efficient homology-directed genome editing system for B. dorsalis that incorporates coinjection of embryos with Cas9 protein, guide RNA and a short single-stranded oligodeoxynucleotide donor. This one-step procedure generates flies carrying V5 tag (42 bp) in the BdorTRH gene. In insects, as in other invertebrates and in vertebrates, the neuronal tryptophan hydroxylase (TRH) gene encodes the rate-limiting enzyme for serotonin biosynthesis in the central nervous system. Using V5 monoclonal antibody, the distribution of TRH in B. dorsalis at different developmental stages was uncovered. Our results will facilitate the generation of insects carrying precise DNA inserts in endogenous genes and will lay foundation for the investigation of the neural mechanisms underlying the serotonin-mediated behaviour of B. dorsalis.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Tephritidae , Animals , Tephritidae/genetics , Tephritidae/metabolism , Tephritidae/growth & development , Gene Editing/methods , Gene Knock-In Techniques , Insect Proteins/genetics , Insect Proteins/metabolism
12.
Pest Manag Sci ; 80(3): 935-952, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37794312

ABSTRACT

Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.


Subject(s)
Oviposition , Tephritidae , Animals , Female , Courtship , Sexual Behavior, Animal , Reproduction , Drosophila
13.
Insect Sci ; 31(2): 371-386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37933419

ABSTRACT

Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.


Subject(s)
Ants , MicroRNAs , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Fire Ants , Juvenile Hormones/metabolism , Ants/physiology , Reproduction , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762284

ABSTRACT

Long non-coding RNAs (lncRNAs) represent a class of RNA molecules that do not encode proteins. Generally studied for their regulatory potential in model insects, relatively little is known about their immunoregulatory functions in different castes of eusocial insects, including Solenopsis invicta, a notoriously invasive insect pest. In the current study, we used Metarhizium anisopliae, an entomopathogenic fungus, to infect the polymorphic worker castes (Major and Minor Workers) and subjected them to RNA sequencing at different intervals (6, 24, and 48 h post-infection (hpi)). Comprehensive bioinformatic analysis identified 5719 (1869 known and 3850 novel) lncRNAs in all libraries. Genomic characteristics analysis showed that S. invicta lncRNAs exhibited structural similarities with lncRNAs from other eusocial insects, including lower exon numbers, shorter intron and exon lengths, and a lower expression profile. A comparison of lncRNAs in major and minor worker ants revealed that several lncRNAs were exclusively expressed in one worker caste and remained absent in the other. LncRNAs such as MSTRG.12029.1, XR_005575440.1 (6 h), MSTRG.16728.1, XR_005575440.1 (24 h), MSTRG.20263.41, and MSTRG.11994.5 (48 h) were only present in major worker ants, while lncRNAs such as MSTRG.8896.1, XR_005574239.1 (6 h), MSTRG.20289.8, XR_005575051.1 (24 h), MSTRG.20289.8, and MSTRG.6682.1 (48 h) were only detected in minor workers. Additionally, we performed real-time quantitative PCR and experimentally validated these findings. Functional annotation of cis-acting lncRNAs in major worker ants showed that lncRNAs targeted genes such as serine protease, trypsin, melanization protease-1, spaetzle-3, etc. In contrast, apoptosis and autophagy-related genes were identified as targets of lncRNAs in minor ants. Lastly, we identified several lncRNAs as precursors of microRNAs (miRNAs), such as miR-8, miR-14, miR-210, miR-6038, etc., indicating a regulatory relationship between lncRNAs, miRNAs, and mRNAs in antifungal immunity. These findings will serve as a genetic resource for lncRNAs in polymorphic eusocial ants and provide a theoretical basis for exploring the function of lncRNAs from a unique and novel perspective.

15.
Insects ; 14(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623411

ABSTRACT

The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, has been used to control S. invicta populations. However, the interaction between M. anisopliae and the immune system of the social insect S. invicta remains poorly understood. In this study, we employed RNA-seq to investigate the effects of M. anisopliae on the immune systems of S. invicta at different time points (0, 6, 24, and 48 h). A total of 1313 differentially expressed genes (DEGs) were identified and classified into 12 expression profiles using short time-series expression miner (STEM) for analysis. Weighted gene co-expression network analysis (WGCNA) was employed to partition all genes into 21 gene modules. Upon analyzing the statistically significant WGCNA model and conducting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the modules, we identified key immune pathways, including the Toll and Imd signaling pathways, lysosomes, autophagy, and phagosomes, which may collectively contribute to S. invicta defense against M. anisopliae infection. Subsequently, we conducted a comprehensive scan of all differentially expressed genes and identified 33 immune-related genes, encompassing various aspects such as recognition, signal transduction, and effector gene expression. Furthermore, by integrating the significant gene modules derived from the WGCNA analysis, we constructed illustrative pathway diagrams depicting the Toll and Imd signaling pathways. Overall, our research findings demonstrated that M. anisopliae suppressed the immune response of S. invicta during the early stages while stimulating its immune response at later stages, making it a potential biopesticide for controlling S. invicta populations. These discoveries lay the foundation for further understanding the immune mechanisms of S. invicta and the molecular mechanisms underlying its response to M. anisopliae.

16.
Pest Manag Sci ; 79(12): 5283-5291, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615248

ABSTRACT

BACKGROUND: Fertilizers and pesticides are commonly used simultaneously in agriculture. However, the effects of common fertilizers on the dissipation, enantioselectivity, and metabolites of the chiral insecticide fipronil in soil are yet to be reported. RESULT: An enantioselective method for detecting fipronil enantiomers and their metabolites in different soil matrices was developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that organic and compound fertilizers significantly decreased the degradation of S- and R-fipronil, whereas phosphate and microbial fertilizers slightly reduced fipronil dissipation. The half-life values for S- and R-fipronil were 43.3 and 28.9 days, 99.0 and 63.0 days, 69.3 and 43.3 days, 46.2 and 30.1 days, and 43.3 and 31.5 days, respectively, in the control and the four fertilizer treatments, respectively. The enantioselectivity of fipronil enantiomers occurred and R-fipronil exhibited preferential degradation with an enantiomeric fraction (EF) of 0.4900-0.6238 in all treatments; but the four tested fertilizers decreased enantioselectivity with EF values changed from 0.4970 to 0.6238 in the control to 0.4900-0.6171 in fertilizer treatments. Two metabolites, fipronil sulfone and sulfide, were produced, and their amounts increased with culture time in all treatments. Fertilization reduced the content of fipronil sulfide and sulfone but hardly reduced the total amount of fipronil and its metabolites. CONCLUSION: Fertilizers affect the environmental behavior of fipronil in the soil. Fertilization alters the soil bacterial community, which may be an important factor. This influence is relatively complicated and should be comprehensively considered in the environmental risk assessment of pesticides. © 2023 Society of Chemical Industry.


Subject(s)
Pesticides , Pyrazoles , Soil , Soil/chemistry , Fertilizers , Chromatography, Liquid , Tandem Mass Spectrometry , Sulfides , Fertilization
17.
ISME J ; 17(10): 1741-1750, 2023 10.
Article in English | MEDLINE | ID: mdl-37550382

ABSTRACT

Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.


Subject(s)
Bacillus , Sex Attractants , Tephritidae , Male , Animals , Sex Attractants/metabolism , Amino Acids/metabolism , Tephritidae/genetics , Tephritidae/metabolism , Glycine/metabolism , Threonine/metabolism , Bacteria
18.
Bull Entomol Res ; 113(4): 574-586, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37501573

ABSTRACT

Insect response to cold stress is often associated with adaptive strategies and chemical variation. However, low-temperature domestication to promote the cold tolerance potential of Bactrocera dorsalis and transformation of main internal substances are not clear. Here, we use a series of low-temperature exposure experiments, supercooling point (SCP) measurement, physiological substances and cryoprotectants detection to reveal that pre-cooling with milder low temperatures (5 and 10°C) for several hours (rapid cold hardening) and days (cold acclimation) can dramatically improve the survival rate of adults and pupae under an extremely low temperature (-6.5°C). Besides, the effect of rapid cold hardening for adults could be maintained even 4 h later with 25°C exposures, and SCP was significantly declined after cold acclimation. Furthermore, content of water, fat, protein, glycogen, sorbitol, glycerol and trehalose in bodies were measured. Results showed that water content was reduced and increased content of proteins, glycogen, glycerol and trehalose after two cold domestications. Our findings suggest that rapid cold hardening and cold acclimation could enhance cold tolerance of B. dorsalis by increasing proteins, glycerol, trehalose and decreasing water content. Conclusively, identifying a physiological variation will be useful for predicting the occurrence and migration trend of B. dorsalis populations.


Subject(s)
Glycerol , Tephritidae , Animals , Trehalose , Cold Temperature , Tephritidae/physiology , Drosophila , Water , Acclimatization , Glycogen
19.
Pest Manag Sci ; 79(8): 2862-2868, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36944553

ABSTRACT

BACKGROUND: Fruit flies are internationally important quarantine or invasive pests of many fruits and vegetables and can cause serious economic losses. Long-term reliance on insecticides for controlling these pests has led to increasing resistance to multiple insecticides; hence, a new agent is needed. In this study, the acute toxicity and sublethal effects of the novel insecticide broflanilide on four adult fruit fly species, Bactrocera dorsalis, Bactrocera cucurbitae, Bactrocera tau, and Bactrocera correcta, were evaluated. RESULTS: Broflanilide was effective against B. dorsalis and B. correcta, with lethal concentration values (amount required to kill 50% of animals; LC50 ) of 0.390 and 1.716 mg/L. However, for B. cucurbitae (19.673 mg/L) and B. tau (24.373 mg/L), the LC50 was 50-60 times higher than that of B. dorsalis. The survival rates of B. correcta and B. cucurbitae were significantly lower under LC50 treatment than those of the control (corrected for mortality rate). Sublethal concentrations of broflanilide stimulated fecundity in all species except B. tau. The hatching rate at LC50 was significantly lower for B. correcta and B. tau compared with the control and even more so for B. correcta, which was zero. CONCLUSION: Broflanilide is potentially an effective insecticide for controlling B. dorsalis and B. correcta. However, the variation in toxicity of broflanilide to the four fruit flies suggests that species variation needs to be carefully considered. Our results highlight the importance of clarifying the sublethal effects of insecticides on target insects to ensure the comprehensive evaluation and rational use of insecticides. © 2023 Society of Chemical Industry.


Subject(s)
Insecticides , Tephritidae , Animals , Insecticides/toxicity , Benzamides/pharmacology , Lethal Dose 50 , Drosophila
20.
Microbiol Spectr ; 11(1): e0358522, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602316

ABSTRACT

Gut symbiotic bacteria are known to be closely related to insect development, nutrient metabolism, and disease resistance traits, but the most important factors leading to changes in these communities have not been well clarified. To address this, we examined the associations between the gut symbiotic bacteria and the host genotype and geographical distribution of Solenopsis invicta in China, where it is invasive and has spread primarily by human-mediated dispersal. Thirty-two phyla were detected in the gut symbiotic bacteria of S. invicta. Proteobacteria were the most dominant group among the gut symbiotic bacteria. Furthermore, the Bray-Curtis dissimilarity matrices of the gut symbiotic bacteria were significantly positively correlated with the geographical distance between the host ant colonies, but this relationship was affected by the social form. The distance between monogyne colonies had a significant effect on the Bray-Curtis dissimilarity matrices of gut symbiotic bacteria, but the distance between polygyne colonies did not. Moreover, the Bray-Curtis dissimilarity matrices were positively correlated with Nei's genetic distance of the host but were not correlated with the COI-based genetic distance. This study provides a scientific basis for further understanding the ecological adaptability of red imported fire ants during invasion and dispersal. IMPORTANCE We demonstrated that gut microbiota composition and diversity varied among populations. These among-population differences were associated with host genotype and geographical distribution. Our results suggested that population-level differences in S. invicta gut microbiota may depend more on environmental factors than on host genotype.


Subject(s)
Ants , Gastrointestinal Microbiome , Animals , Humans , Ants/genetics , Ants/microbiology , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Proteobacteria/genetics , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL