Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Emerg Microbes Infect ; : 2341144, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847579

ABSTRACT

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.

2.
PLoS Pathog ; 18(9): e1010835, 2022 09.
Article in English | MEDLINE | ID: mdl-36084138

ABSTRACT

Influenza A viruses effectively hijack the intracellular "resources" to complete transcription and replication, which involve extensive interactions between the viral and host proteins. Herein, we screened the host factors, which belong to DExD/H-box protein family members, RNA-binding proteins or mitochondrial anchoring proteins, to investigate their effects on polymerase activity. We observed DDX39B and DDX39A, DEAD-box RNA-Helicases, exert a dual effect on regulating polymerase activity and replication of influenza A viruses. We further revealed that DDX39B and DDX39A interact with viral NP and NS1 proteins. Interestingly, the viral NP proteins could reverse the inhibitory effect of excess DDX39B or DDX39A on polymerase activity. Mechanistically, the TREX complex subunits, THOC1, THOC4 and CIP29, were recruited to DDX39B-DDX39A-NP complex in an ATP-dependent manner, via the interaction with DDX39B or DDX39A, followed by excess TREX-NP complexes interfere with the normal oligomerization state of NP depending on the ratio between the viral and host proteins. On the other hand, the TREX complex, an evolutionarily conserved protein complex, is responsible for the integration of several mRNA processing steps to export viral mRNA. Knockdown of TREX complex subunits significantly down-regulated viral titers and protein levels, accompanied by retention of viral mRNA in the nucleus. Taken together, screening the host factors that regulate the replication of influenza virus advances our understanding of viral pathogenesis and our findings point out a previously unclear mechanism of TREX complex function.


Subject(s)
Influenza A virus , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/metabolism , Influenza A virus/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
3.
Viruses ; 14(6)2022 06 01.
Article in English | MEDLINE | ID: mdl-35746676

ABSTRACT

Influenza A viruses (IAV) modulate host antiviral responses to promote viral growth and pathogenicity. The non-structural (NS1) protein of influenza A virus has played an indispensable role in the inhibition of host immune responses, especially in limiting interferon (IFN) production. In this study, random site mutations were introduced into the NS1 gene of A/WSN/1933 (WSN, H1N1) via an error prone PCR to construct a random mutant plasmid library. The NS1 random mutant virus library was generated by reverse genetics. To screen out the unidentified NS1 functional mutants, the library viruses were lung-to-lung passaged in mice and individual plaques were picked from the fourth passage in mice lungs. Sanger sequencing revealed that eight different kinds of mutations in the NS1 gene were obtained from the passaged library virus. We found that the NS1 F9Y mutation significantly enhanced viral growth in vitro (MDCK and A549 cells) and in vivo (BALB/c mice) as well as increased virulence in mice. The NS1 D2I mutation attenuated the viral replication and pathogenicity in both in vitro and in vivo models. Further studies demonstrated that the NS1 F9Y mutant virus exhibited systematic and selective inhibition of cytokine responses as well as inhibited the expression of IFN. In addition, the expression levels of innate immunity-related cytokines were significantly up-regulated after the rNS1 D2I virus infected A549 cells. Collectively, our results revealed that the two mutations in the N-terminal of the NS1 protein could alter the viral properties of IAV and provide additional evidence that the NS1 protein is a critical virulence factor. The two characterized NS1 mutations may serve as potential targets for antiviral drugs as well as attenuated vaccine development.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Animals , Antiviral Agents/pharmacology , Immunity, Innate , Influenza A virus/genetics , Influenza A virus/metabolism , Mice , Mutation , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
Vet Microbiol ; 271: 109491, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714529

ABSTRACT

Viral infectious pathogens, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, can cause extremely high infection rates and mortality in humans. Therefore, it is urgent to develop an effective vaccine against coronavirus and influenza virus infection. Herein, we used the influenza virus as a vector to express the SARS-CoV-2 spike receptor-binding domain (RBD) and hemagglutinin-esterase-fusion (HEF) protein of the influenza C virus. We then evaluated the feasibility and effectiveness of this design strategy through experiments in vitro and in vivo. The results showed that the chimeric viruses could stably express the HEF protein and the SARS-CoV-2 spike RBD at a high level. BALB/c mice, infected with the chimeric virus, exhibited mild clinical symptoms, yet produced high specific antibody levels against RBD and HEF, including neutralizing antibodies. Importantly, high neutralizing antibodies could be retained in the sera of mice for at least 20 weeks. Altogether, our data provided a new strategy for developing safe and effective COVID-19 and influenza virus vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Influenza Vaccines , Orthomyxoviridae , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Influenza Vaccines/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
5.
Microbiol Spectr ; 10(3): e0109822, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35583334

ABSTRACT

DEAD-box helicase 5 (DDX5), a member of the DEAD/H-box helicases, is known to participate in all aspects of RNA metabolism. However, its regulatory effect in antiviral innate immunity during replication of influenza virus remains unclear. Herein, we found that human DDX5 promotes replication of influenza virus in A549 cells. Moreover, our results further revealed that DDX5 relies on its N terminus to interact with the nucleoprotein (NP) of influenza virus, which is independent of RNA. Of course, we also observed colocalization of DDX5 with NP in the context of transfection or infection. However, influenza virus infection had no significant effect on the protein expression and nucleocytoplasmic distribution of DDX5. Importantly, we found that DDX5 suppresses antiviral innate immunity induced by influenza virus infection. Mechanistically, DDX5 downregulated the mRNA levels of interferon beta (IFN-ß), interleukin 6 (IL-6), and DHX58 via the METTL3-METTL14/YTHDF2 axis. We revealed that DDX5 bound antiviral transcripts and regulated immune responses through YTHDF2-dependent mRNA decay. Taken together, our data demonstrate that the DDX5/METTL3-METTL14/YTHDF2 axis regulates the replication of influenza A virus. IMPORTANCE The replication and transcription of influenza virus depends on the participation of many host factors in cells. Exploring the relationship between viruses and host factors will help us fully understand the characteristics and pathogenic mechanisms of influenza viruses. In this study, we showed that DDX5 interacted with the NP of influenza virus. We demonstrated that DDX5 downregulated the expression of IFN-ß and IL-6 and the transcription of antiviral genes downstream from IFN-ß in influenza virus-infected A549 cells. Additionally, DDX5 downregulated the mRNA levels of antiviral transcripts via the METTL3-METTL14/YTHDF2 axis. Our findings provide a novel perspective to understand the mechanism by which DDX5 regulates antiviral immunity.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Antiviral Agents , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Humans , Immunity, Innate , Influenza A virus/genetics , Influenza, Human/genetics , Interferon-beta/genetics , Interleukin-6 , Methyltransferases , RNA , RNA, Messenger , RNA-Binding Proteins , Transcription Factors
6.
Viruses ; 14(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35458455

ABSTRACT

The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China-with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Amino Acids/genetics , Animals , Chickens , China/epidemiology , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins/genetics , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny
7.
Vet Microbiol ; 266: 109343, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35063826

ABSTRACT

Many host factors were involved in regulating the polymerase activity of influenza A virus. To fully explore the role of polymerase complex-related host factors, we combined high-throughput transcriptome data to analyze the changes in mRNA levels of these factors during viral infection. Transcriptome data showed that viral infection caused down-regulation of MYH9, HNRNPU, SRSF3 and RPS24 mRNA levels. We confirmed the changes in mRNA and protein levels of MYH9, HNRNPU and SRSF3 by qPCR and WB. Then their effects on virus replication were tested through overexpression and knockdown experiments. We emphatically explained the mechanism of SRSF3 during influenza virus replication. Results showed that SRSF3 promoted influenza virus replication and regulated viral protein expression at the post-transcriptional level. Further analysis found that SRSF3 regulated viral replication depends on the 88th amino acid. RIP and FISH experiments further proved that SRSF3 bound to viral mRNA and participated in the nuclear and cytoplasmic transport of viral mRNA. Collectively, these findings suggested that virus infection regulated the expression of many host factors and SRSF3 positively regulated virus replication.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Humans , Influenza A virus/genetics , RNA, Messenger/genetics , Viral Proteins , Virus Replication
8.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2435-2442, 2021 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-34327908

ABSTRACT

The stability of virus-like particles (VLPs) is currently the main factor affecting the quality of foot-and-mouth disease VLPs vaccines. In order to further improve the quality of the VLPs vaccine of foot-and-mouth disease (FMD), three amino acid modification sites were designed and screened through kinetic analysis software, based on the three-dimensional structure of FMDV. The three mutant recombinant plasmids were successfully prepared by the point mutation kit, transformed into Escherichia coli strain BL21 and expressed in vitro. After purification by Ni ion chromatography column, SDS-PAGE proved that the three amino acid mutations did not affect the expression of the target protein. The results of the stability study of three FMD mutant VLPs obtained by in vitro assembly show that the introduction of internal hydrophobic side chain amino acids made the morphology of VLPs more uniform (N4017W), and their stability was significantly improved compared to the other two VLPs. The internal hydrophobic force of the capsid contributes to the formation of VLPs and helps to maintain the stability of the capsid, providing new experimental ideas for improving the quality of VLPs vaccines, and helping to promote the development of VLPs vaccines.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Vaccines, Virus-Like Particle , Viral Vaccines , Amino Acids , Animals , Capsid Proteins/genetics , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Kinetics , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/genetics
9.
J Virol ; 95(16): e0017721, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34011545

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals that causes a significant economic burden globally. Vaccination is the most effective FMD control strategy. However, FMD virus (FMDV) particles are prone to dissociate when appropriate physical or chemical conditions are unavailable, such as an incomplete cold chain. Such degraded vaccines result in compromised herd vaccination. Therefore, thermostable FMD particles are needed for use in vaccines. This study generated thermostable FMDV mutants (M3 and M10) by serial passages at high temperature, subsequent amplification, and purification. Both mutants contained an alanine-to-threonine mutation at position 13 in VP1 (A1013T), although M3 contained 3 additional mutations. The selected mutants showed improved stability and immunogenicity in neutralizing antibody titers, compared with the wild-type (wt) virus. The sequencing analysis and cryo-electron microscopy showed that the mutation of alanine to threonine at the 13th amino acid in the VP1 protein (A1013T) is critical for the capsid stability of FMDV. Virus-like particles containing A1013T (VLPA1013T) also showed significantly improved stability to heat treatment. This study demonstrated that Thr at the 13th amino acid of VP1 could stabilize the capsid of FMDV. Our findings will facilitate the development of a stable vaccine against FMDV serotype O. IMPORTANCE Foot-and-mouth disease (FMD) serotype O is one of the global epidemic serotypes and causes significant economic loss. Vaccination plays a key role in the prevention and control of FMD. However, the success of vaccination mainly depends on the quality of the vaccine. Here, the thermostable FMD virus (FMDV) mutants (M3 and M10) were selected through thermal screening at high temperatures with improved stability and immunogenicity compared with the wild-type virus. The results of multisequence alignment and cryo-electron microscopy (cryo-EM) analysis showed that the Thr substitution at the 13th amino acid in the VP1 protein is critical for the capsid stability of FMDV. For thermolabile type O FMDV, this major discovery will aid the development of its thermostable vaccine.


Subject(s)
Capsid Proteins/immunology , Capsid/immunology , Foot-and-Mouth Disease Virus/immunology , Viral Vaccines/immunology , Amino Acid Substitution , Animals , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cryoelectron Microscopy , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Guinea Pigs , Hot Temperature , Immunogenicity, Vaccine , Mutation , Protein Stability , Serogroup , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Virology
10.
Res Vet Sci ; 136: 89-96, 2021 May.
Article in English | MEDLINE | ID: mdl-33592449

ABSTRACT

Although the immunogenicity of DNA vaccines is nonideal, they are still considered as potential alternative vaccine candidates to conventional vaccines. Various DNA delivery systems, including nanoparticles, have been extensively explored and validated to further enhance the immunogenicity of DNA vaccines. DNA vaccines are considered as alternative vaccine candidates. Various DNA delivery systems, including nanoparticles, have been extensively explored to enhance the immunogenicity of DNA vaccines. In this study, positively charged Poly (D, l-lactide-co-glycolic acid) (PLGA) nanoparticles were generated and characterized as a delivery system for O-serotype foot-and-mouth DNA vaccine. A recombinant plasmid encoding swine interleukin (IL)-18, IL-2, or granulocyte-macrophage colony-stimulating factor (GM-CSF) gene was introduced into the DNA vaccine to further improve its immunogenicity, which was evaluated in a guinea pig model. PLGA-pVAX-VP013/IL-18 elicited significantly (P = 0.0149) higher FMDV-specific antibody levels than naked DNA before the challenge. The level of neutralizing antibodies induced by PLGA-pVAX-VP013/IL-18, PLGA-pVAX-VP013/IL-2, and PLGA-pVAX-VP013/GM-CSF significantly increased compared with that induced by naked DNA (P < 0.0001). The lymphocyte proliferation assay showed that cellular immunity induced by PLGA-pVAX-VP013/IL-18 and PLGA-pVAX-VP013/GM-CSF was dramatically enhanced compared with that induced by the inactivated vaccine. The protection by PLGA-pVAX-VP013/IL-18 was consistent with that by the inactivated vaccine post-challenge and was followed by PLGA-pVAX-VP013/GM-CSF. Therefore, cationic PLGA nanoparticles can deliver DNA vaccines and induce humoral and cellular immune responses. The co-administration of FMD DNA vaccine with IL-18 formulated with PLGA nanoparticles was the optimal strategy to improve the immunogenicity of FMD DNA vaccines.


Subject(s)
Foot-and-Mouth Disease Virus/immunology , Immunogenicity, Vaccine , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Guinea Pigs , Interleukin-18/immunology , Interleukin-2/immunology , Nanoparticles/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Serogroup
11.
Microb Pathog ; 143: 104130, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32165331

ABSTRACT

Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animals. Virus-like particles (VLPs) can induce a robust immune response and deliver DNA and small molecules. In this study, a VLP-harboring pcDNA3.1/P12A3C plasmid was generated, and the protective immune response was characterized. Guinea pigs were injected with VLPs, naked DNA vaccine, DNA-loaded VLPs, or phosphate-buffered saline twice subcutaneously at four-week intervals. Results demonstrated that the VLPs protected the naked DNA from DNase degeneration and delivered the DNA into the cells in vitro. The DNA-loaded VLPs and the VLPs alone induced a similar level of specific antibodies (P > 0.05) except at 49 dpv (P < 0.05). The difference in interferon-γ was consistent with that in specific antibodies. The levels of neutralizing antibodies induced by the DNA-loaded VLPs were significantly higher than those of other samples (P < 0.01). Similarly, the lymphocyte proliferation by using DNA-loaded VLPs was significantly higher than those using other formulas after booster immunization. Vaccination with DNA-loaded VLPs provided higher protection (100%) against viral challenge compared with vaccination with VLPs (75%) and DNA vaccine (25%). This study suggested that VLPs can be used as a delivery carrier for DNA vaccine. In turn, the DNA vaccine can enhance the immune response and prolong the serological duration of the VLP vaccine. This phenomenon contributes in providing complete protection against the FMDV challenge in guinea pigs and can be valuable in exploring novel nonreplicating vaccines and controlling FMD in endemic countries worldwide.


Subject(s)
DNA, Viral/administration & dosage , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease/prevention & control , Vaccines, Virus-Like Particle/therapeutic use , Viral Vaccines/therapeutic use , Animals , DNA, Viral/genetics , Enzyme-Linked Immunosorbent Assay , Female , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/immunology , Guinea Pigs , Neutralization Tests , Vaccines, Virus-Like Particle/administration & dosage , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...