Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709246

ABSTRACT

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Subject(s)
Immunotherapy , Membrane Proteins , Pyroptosis , Tumor Microenvironment , Uterine Cervical Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/therapy , Female , Humans , Mice , Animals , Pyroptosis/drug effects , Membrane Proteins/metabolism , Manganese/chemistry , Manganese/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Signal Transduction/drug effects , Cell Proliferation/drug effects , Calcium/metabolism , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
2.
Insects ; 15(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786856

ABSTRACT

The Sitophilus zeamais (maize weevil) and Sitophilus oryzae (rice weevil) are two insect pests that have caused huge economic losses to stored grains worldwide. It is urgent to develop an environmentally friendly strategy for the control of these destructive pests. Here, the olfactory-mediated selection preference of the two weevil species to three stored grains was analyzed, which should help establish a pull-push system in managing them. Bioassays showed that maize weevil adults prefer to select maize, followed by paddy and wheat, while rice weevil adults mainly migrate towards wheat. Volatile analyses revealed that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene are the major components in volatiles from both maize and wheat, but the abundance of these chemicals is much lower in maize than that in wheat. The volatile limonene was only detected in paddy. Y-tube bioassays suggest that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene were all attractive to both weevils, whereas limonene was attractive only to rice weevils. Overall, maize weevil appeared more sensitive to the tested volatiles based on having much lower effective concentrations of these volatiles needed to attract them. The differences in volatile profiles among the grains and the sensitivity of the two species towards these volatiles may explain the behavioral differences between maize and rice weevils in selecting host grains. The differences in sensitivity of maize and rice weevils towards host volatile components with abundance differences are likely determinants driving the two insect species to migrate towards different host grains.

3.
ACS Nano ; 18(15): 10542-10556, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38561324

ABSTRACT

Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.


Subject(s)
Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/therapy , Hyaluronic Acid , Immunotherapy , Peroxides , Zinc , Tumor Microenvironment , Cell Line, Tumor
4.
Front Microbiol ; 15: 1382639, 2024.
Article in English | MEDLINE | ID: mdl-38577686

ABSTRACT

Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1ß, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.

5.
Pestic Biochem Physiol ; 201: 105861, 2024 May.
Article in English | MEDLINE | ID: mdl-38685215

ABSTRACT

Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that ß-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.


Subject(s)
Insect Proteins , Molecular Docking Simulation , Receptors, Odorant , Tribolium , Animals , Tribolium/drug effects , Tribolium/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Insecticides/pharmacology , Insecticides/toxicity , Polycyclic Sesquiterpenes/pharmacology , Molecular Dynamics Simulation
6.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Article in English | MEDLINE | ID: mdl-38685211

ABSTRACT

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Insect Proteins , Lectins, C-Type , Staphylococcus aureus , Tribolium , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Tribolium/immunology , Tribolium/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Hemocytes/immunology , Hemocytes/metabolism , Escherichia coli , Phagocytosis , Larva/immunology , Larva/microbiology
7.
Insights Imaging ; 15(1): 97, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536542

ABSTRACT

PURPOSE: To explore the predictive potential of intratumoral and multiregion peritumoral radiomics features extracted from multiparametric MRI for predicting pathological differentiation in hepatocellular carcinoma (HCC) patients. METHODS: A total of 265 patients with 277 HCCs (training cohort n = 193, validation cohort n = 84) who underwent preoperative MRI were retrospectively analyzed. The risk factors identified through stepwise regression analysis were utilized to construct a clinical model. Radiomics models based on MRI (arterial phase, portal venous phase, delayed phase) across various regions (entire tumor, Peri_5mm, Peri_10mm, Peri_20mm) were developed using the LASSO approach. The features obtained from the intratumoral region and the optimal peritumoral region were combined to design the IntraPeri fusion model. Model performance was assessed using the area under the curve (AUC). RESULTS: Larger size, non-smooth margins, and mosaic architecture were risk factors for poorly differentiated HCC (pHCC). The clinical model achieved AUCs of 0.77 and 0.73 in the training and validation cohorts, respectively, while the intratumoral model achieved corresponding AUC values of 0.92 and 0.82. The Peri_10mm model demonstrated superior performance to the Peri_5mm and Peri_20mm models, with AUC values of 0.87 vs. 0.84 vs. 0.73 in the training cohort and 0.80 vs. 0.77 vs. 0.68 in the validation cohort, respectively. The IntraPeri model exhibited remarkable AUC values of 0.95 and 0.86 in predicting pHCC in the training and validation cohorts, respectively. CONCLUSIONS: Our study highlights the potential of a multiparametric MRI-based radiomic model that integrates intratumoral and peritumoral features as a tool for predicting HCC differentiation. CRITICAL RELEVANCE STATEMENT: Both clinical and multiparametric MRI-based radiomic models, particularly the intratumoral radiomic model, are non-invasive tools for predicting HCC differentiation. Importantly, the IntraPeri fusion model exhibited remarkable predictiveness for individualized HCC differentiation. KEY POINTS: • Both the intratumoral radiomics model and clinical features were useful for predicting HCC differentiation. • The Peri_10mm radiomics model demonstrated better diagnostic ability than other peritumoral region-based models. • The IntraPeri radiomics fusion model outperformed the other models for predicting HCC differentiation.

8.
Foods ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338575

ABSTRACT

As one of the most abundant natural polysaccharides that possess good biological activity, chitosan is extracted from chitin. Its application in the food field is being increasingly valued. However, chitosan extraction is difficult, and its poor solubility limits its application. At present, the extraction methods include the acid-base method, new chemical methods, and biological methods. The extraction rates of chitin/chitosan are 4-55%, 13-14%, and 15-28%, respectively. Different chemical modifications have different effects on chitosan, making it applicable in different fields. This article reviews and compares the extraction and chemical modification methods of chitosan, emphasizing the importance of green extraction methods. Finally, the application prospects of chitosan in the food industry are discussed. This will promote the understanding of the advantages and disadvantages of different extraction methods for chitosan as well as the relationship between modification and application, providing valuable insights for the future development of chitosan.

9.
Int J Biol Macromol ; 261(Pt 1): 129590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266859

ABSTRACT

As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.


Subject(s)
Abrus , Gastrointestinal Microbiome , Mice , Animals , Butyric Acid , Immunosuppression Therapy , Intestines , Polysaccharides/pharmacology
10.
Int J Pharm ; 649: 123668, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38048891

ABSTRACT

Transfersomes (TFSs) have been extensively investigated to enhance transdermal drug delivery. As a colloidal dispersion system, TFSs are prone to problems such as particle aggregation and sedimentation, oxidation and decomposition of phospholipids. To enhance the stability of panax notoginseng saponins (PNS)-loaded transfersomes (PNS-TFSs) without adverse influences on their skin permeation, we prepared lyophilized PNS-loaded transfersomes (PNS-FD-TFSs), clarified their physicochemical characteristics and investigated their in vitro drug release, ex vivo skin permeation/deposition and in vivo pharmacokinetics. In this study, a simple, fast and controllable process was developed for preparing lyophilized PNS-TFSs. In the optimized PNS-FD-TFS formulation, sucrose and trehalose were added to the PNS-TFS dispersion with a mass ratio of trehalose, sucrose, and phospholipid of 3:2:1, and the mixture was frozen at -80 °C for 12 h followed by lyophilization at -45 °C and 5 Pa for 24 h. The optimized formulation of PNS-FD-TFSs was screened based on the appearance and reconstitution time of the lyophilized products, vesicle size, and PDI of the freshly reconstituted dispersions. It maintained stable physicochemical properties for at least 6 months at 4 °C. The vesicle size of PNS-FD-TFSs was below 100 nm and homogenous with a polydispersity index of 0.2 after reconstitution. The average encapsulation efficiencies of the five index saponins notoginsenoside R1 (NGR1), ginsenoside Rg1 (GRg1), ginsenoside Re (GRe), ginsenoside Rb1 (GRb1) and ginsenoside Rd (GRd) in PNS-FD-TFSs were 68.41 ± 5.77%, 68.95 ± 6.08%, 65.46 ± 10.95%, 91.50 ± 5.62% and 95.78 ± 1.70%, respectively. The reconstituted dispersions of PNS-FD-TFSs were similar to PNS-TFSs in in vitro release, ex vivo skin permeation, and deposition. The pharmacokinetic studies showed that, compared with the PNS liposomes (PNS-LPS), the PNS-FD-TFS-loaded drug could permeate through the skin and enter the blood rapidly. It can be concluded that the lyophilization process can effectively improve the stability of PNS-TFSs without compromising their transdermal absorption properties.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax notoginseng , Saponins , Panax notoginseng/chemistry , Trehalose , Ginsenosides/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Phospholipids , Sucrose
11.
Acad Radiol ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38057182

ABSTRACT

RATIONALE AND OBJECTIVES: To explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC). METHODS: CEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS: The training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively. CONCLUSION: A fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.

12.
J Hepatocell Carcinoma ; 10: 2103-2115, 2023.
Article in English | MEDLINE | ID: mdl-38050577

ABSTRACT

Purpose: To develop and compare various machine learning (ML) classifiers that employ radiomics extracted from contrast-enhanced magnetic resonance imaging (CEMRI) for diagnosing pathological differentiation of hepatocellular carcinoma (HCC), and validate the performance of the best model. Methods: A total of 251 patients with HCCs (n = 262) were assigned to a training (n = 200) cohort and a validation (n = 62) cohort. A collection of 5502 radiomics signatures were extracted from the CEMRI images for each HCC nodule. To reduce redundancy and dimensionality, Spearman rank correlation, minimum redundancy maximum relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) approach were employed. Eight ML classifiers were trained to obtain the best radiomics model. The performance of each model was evaluated based on the area under the receiver operating characteristic curve (AUC). The radiomics model was integrated with liver imaging reporting and data system (LI-RADS) features to design a combined model. Results: The eXtreme Gradient Boosting (XGBoost)-based radiomics model outperformed other ML classifiers in evaluating pHCC, achieving an AUC of 1.00 and accuracy of 1.00 in the training cohort. The LI-RADS model demonstrated an AUC value of 0.77 and 0.82 in the training and validation cohorts. The combined model exhibited best performance in both the training and validation cohorts, with AUCs of 1.00 and 0.86 for evaluating HCC differentiation, respectively. Conclusion: CEMRI radiomics integrating LI-RADS features demonstrated excellent performance in evaluating HCC differentiation, suggesting an optimal clinical decision tool for individualized diagnosis of HCC differentiation.

13.
Gland Surg ; 12(11): 1475-1484, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38107490

ABSTRACT

Background: The demand for immediate breast reconstruction with a deep inferior epigastric perforator (DIEP) flap is recovering as coronavirus disease 2019 (COVID-19) transitions from a pandemic to an endemic. This study sought to evaluate the safety of resuming DIEP flap reconstruction in the post-COVID-19 era. Methods: Consecutive breast cancer patients who underwent immediate breast reconstruction with a DIEP flap at the Comprehensive Breast Health Center, Ruijin Hospital were retrospectively included in the study. The patients were divided into a post-pandemic group (Group A) and a pre-pandemic group (Group B). The clinicopathological factors, surgical procedures, and rates of post-operative complications were compared between the two groups using the Mann-Whitney U test and Chi-squared test. Results: A total of 167 patients were included in the study, of whom 119 (71.3%) were in Group A and 48 (28.7%) were in Group B. The two groups had similar clinicopathological features, including age (P=0.988), body mass index (P=0.504), and tumor, node, metastasis (TNM) stage (P=0.932). The Group A patients were more likely to receive single perforator DIEP flap transplantation than the Group B patients (n=28, 22.8% vs. n=3, 5.8%, P=0.007). There was a numerical decrease in the mean operating time of Group A patients compared to Group B patients (9.82 vs. 10.12 hours, P=0.172). The mean length of stay after the surgery was significantly shorter after the pandemic than before the pandemic (11.2 vs. 14.3 days, P<0.001). The complication rates between the two groups were similar. Conclusions: This study provides evidence that resuming DIEP reconstruction is safe in the post-COVID-19 era.

14.
Pestic Biochem Physiol ; 196: 105583, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945269

ABSTRACT

The serine/threonine kinase Akt is an important component of the insulin signalling pathway (ISP) in regulating insect metabolism, growth, and reproduction. The psocid Liposcelis entomophila (Enderlein) is a distasteful stored products pest for its fecundity. However, the molecular mechanism of Akt that controls vitellogenesis and oviposition in L. entomophila remains obscure. In this study, the function of the Akt gene in the female reproduction of L. entomophila (designated as LeAkt) was characterized and investigated. LeAkt contains a 1587 bp open reading frame encoding a 529 amino acid protein that possesses a conserved Pleckstrin Homology domain (PH) and a Ser/Thr-type protein kinase (S_TKc) domain. The mRNA expression of LeAkt was the highest in female adult stages and peaked for 7-day female adults. In female adult tissues, LeAkt was highly expressed in the head and the ovary, indicating that LeAkt was closely correlated with female ovarian development. LeAkt transcription level was significantly suppressed by oral feeding on artificial diets mixed with dsRNA-LeAkt. RNAi-mediated silencing of LeAkt led to a severe inhibition of vitellogenein (Vg) expression and ovarian development, together with lower fecundity and hatchability compared to that of the normal feeding group, suggesting a critical role for LeAkt in L. entomophila reproduction. Further studies revealed that LeAkt silencing significantly decreased the mRNA levels of several signalling and biosynthetic genes in the juvenile hormone (JH) signalling pathway, such as methoprene-tolerant (LeMet), krüppel homolog 1 (LeKr-h1) and JH methyltransferase (LeJHAMT), leading to a severe inhibition of JH biosynthesis in L. entomophila female adults. These results suggested that LeAkt was affecting JH synthesis, thereby influencing Vg synthesis and ultimately L. entomophila reproduction.


Subject(s)
Juvenile Hormones , Proto-Oncogene Proteins c-akt , Animals , Proto-Oncogene Proteins c-akt/genetics , Juvenile Hormones/metabolism , Fertility , RNA, Messenger , Serine , Insect Proteins/genetics , Insect Proteins/metabolism
15.
J Transl Med ; 21(1): 737, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853469

ABSTRACT

BACKGROUND: BRAF non-V600 mutation occupies a relatively small but critical subset in colorectal cancer (CRC). However, little is known about the biological functions and impacts of BRAF class III mutation in CRC. Here, we aim to explore how D594A mutation impacts on biological behaviors and immune related signatures in murine CRC cells. METHODS: BRAF V600E (class I), G469V (class II) and D594A (class III) mutant cell lines were established based on MC38 cells. The biological behaviors of cells were evaluated in respect of cell growth, cell proliferation, cell apoptosis, cell migration and invasion by the methods of colony-forming assay, CCK-8 assay, Annexin V/PI staining and transwell assay. The concentrations of soluble cytokines were detected by ELISA. The membrane expression of immuno-modulatory molecules and the pattern of tumor infiltrating lymphocyte were evaluated by flow cytometry. The molecular mechanism was explored by RNA sequencing. Immunohistochemistry (IHC) staining was used for the detection of CD8α in tumor tissues. qRT-PCR and western blot were performed to assess the mRNA and protein expression. Anti-PD-L1 treatment and cytokines neutralization experiments were conducted in in vivo models. RESULTS: D594A mutant cells displayed lower grade malignancy characteristics than V600E (class I) and G469V (class II) mutant cells. Meanwhile, D594A mutation led to evident immuno-modulatory features including upregulation of MHC Class I and PD-L1. In vivo experiments displayed that the frequency of infiltrated CD8+ T cells was significantly high within D594A mutant tumors, which may provide potential response to anti-PD-L1 therapy. RNA sequencing analysis showed that D594A mutation led to enhanced expression of ATF3 and THBS1, which thus facilitated CXCL9 and CXCL10 production upon IFN-γ treatment. In addition, CXCL9 or CXCL10 neutralization reduced the infiltration of CD8+ T cells into THBS1-overexpressing tumors. CONCLUSIONS: D594A mutant CRC exhibited lower aggressiveness and immune-activated phenotype. ATF3-THBS1-CXCL9/CXCL10 axis mediated functional CD8+ T cells infiltration into the microenvironment of D594A mutant CRC. Our present study is helpful to define this mutation in CRC and provide important insights in designing effective immunotherapeutic strategies in clinic.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Animals , Mice , Colorectal Neoplasms/pathology , Cytokines/genetics , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Tumor Microenvironment
16.
Poult Sci ; 102(11): 102975, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708766

ABSTRACT

Magnolol, a natural extract from magnolia officinalis, has received growing interest in its bioactive properties such as antioxidant, anti-inflammatory, and antibacterial activities. Nevertheless, there is little research on Magnolol in the treatment of parasitic infections currently. Eimeria tenella (E. tenella) infection causes damage to epithelial cells and cecal mucosa, resulting in increased intestinal permeability, which is pretty detrimental to the balance of the intestinal microenvironment. However, at present, in the treatment of chicken coccidiosis, the abuse of antibiotics is quite serious, which has brought losses and harms to the chicken farming industry that cannot be ignored. In this study, based on the excellent antioxidant and anti-inflammatory properties of Magnolol, we proved that it does have a desirable therapeutic potential on chicks infected with E. tenella. Actually, the results showed that the clinical symptoms of the chicks infected with E. tenella were relieved and their growth performance was restored by Magnolol treatment. Furthermore, Magnolol improved the antioxidant and anti-inflammatory properties of chicks. Meanwhile, the Magnolol reversed the imbalance of the intestinal microbiota of sick chicks, which recovered the diversity, promoted the potential beneficial bacteria, and inhabited the potential pathogenic bacteria. Overall, Magnolol may be an alternative to chemical drugs that are effective in treating E. tenella infections.


Subject(s)
Coccidiosis , Eimeria tenella , Gastrointestinal Microbiome , Poultry Diseases , Animals , Antioxidants/therapeutic use , Chickens/parasitology , Coccidiosis/drug therapy , Coccidiosis/veterinary , Coccidiosis/microbiology , Poultry Diseases/drug therapy , Poultry Diseases/parasitology
17.
Br J Cancer ; 129(8): 1274-1283, 2023 10.
Article in English | MEDLINE | ID: mdl-37604930

ABSTRACT

BACKGROUND: HER2-low breast cancers (BC) show a good response to novel anti-HER2 antibody-drug conjugates (ADCs) in advanced setting. Nevertheless, little is known about the response, category change, and prognosis of HER2-low BC receiving neoadjuvant treatment (NAT). METHODS: Consecutive invasive BC patients who underwent ≥ 4 cycles of NAT and surgery from January 2009 to December 2020 were retrospectively reviewed. HER2-low was defined as IHC 1+ or 2+ and FISH negative. Concordance rates of HER2 and other biomarkers were analyzed by Kappa test. Kaplan-Meier analysis and Cox regression were used to assess the recurrence-free interval (RFI) and overall survival (OS). RESULTS: A total of 2489 patients were included, of whom 1023 (41.1%) had HER2-low tumors. HER2-low patients had a higher ER positivity rate than HER2-0 patients (78.5% vs. 63.6%, P < 0.001), and a similar breast pathological complete response (pCR) rate (20.6% vs. 21.8%, P = 0.617). Among non-pCR cases, 39.5% of HER2-0 tumors changed to HER2-low, and 14.3% of HER2-low tumors changed to HER2-0 after NAT. Low concordance rates of HER2-low status were found in both ER-positive (Kappa = 0.368) and ER-negative (Kappa = 0.444) patients. Primary HER2-low patients had a significantly better RFI than HER2-0 patients (P = 0.014), especially among ER-positive subset (P = 0.016). Moreover, HER2-low category change was associated with RFI in ER-positive subset (adjusted P = 0.043). CONCLUSIONS: Compared with HER2-0 patients, HER2-low patients had a high proportion of ER-positive tumor and a similar pCR rate, which were related with better prognosis, especially in residual cases after NAT. A remarkable instability of HER2-low status was found between the primary and residual tumor, indicating re-testing HER2 status after NAT in the new era of anti-HER2 ADCs therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Prognosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoadjuvant Therapy , Retrospective Studies , Receptor, ErbB-2/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/therapeutic use
18.
Biomed Pharmacother ; 166: 115323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579692

ABSTRACT

Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.


Subject(s)
Coenzyme A Ligases , Dyslipidemias , Humans , Triglycerides , Dyslipidemias/drug therapy , Cholesterol , Hydroxymethylglutaryl-CoA Synthase
19.
J Econ Entomol ; 116(5): 1820-1829, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37651100

ABSTRACT

Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) has developed extensive resistance to the fumigant phosphine. Knowledge of the resistance mechanisms offers insight into resistance management. Although several studies have highlighted the positive or negative impacts of symbiotic microbiota on host pesticide resistance, little is known about the association between gut symbionts and host phosphine resistance. To reveal the effect of the gut bacterium, Enterococcus faecalis (Andrewes & Horder) (Lactobacillales: Enterococcaceae), on host phosphine resistance and its underlying mechanism, we investigated mortality, fitness, redox responses, and immune responses of adult T. castaneum when challenged with E. faecalis inoculation and/or phosphine exposure. When T. castaneum was exposed to phosphine, E. faecalis inoculation decreased its survival and female fecundity and aggravated its oxidative stress. Furthermore, E. faecalis inoculation suppressed the expression and activity of superoxide dismutase, catalase, and peroxidase in phosphine-exposed T. castaneum. Enterococcus faecalis inoculation also triggered excessive host immune responses, including the immune deficiency signaling pathway and the dual oxidase-reactive oxygen species system. These findings suggest that E. faecalis likely modulates host phosphine resistance by interfering with the redox system. This provides information for examining the symbiotic function in the insect-microorganism relationship and new avenues for pesticide resistance management.

20.
Acta Radiol ; 64(8): 2485-2491, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545177

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the second most common cancer in women worldwide. Diffusion-weighted imaging (DWI) plays an important role in the diagnosis of CC, but the conventional techniques are affected by many factors. PURPOSE: To compare reduced-field-of-view (r-FOV) and full-field-of-view (f-FOV) DWI in the diagnosis of CC. MATERIAL AND METHODS: Preoperative magnetic resonance imaging (MRI) with r-FOV and f-FOV DWI images were collected. Two radiologists reviewed the images using a subjective 4-point scale for anatomical features, magnetic susceptibility artifacts, visual distortion, and overall diagnostic confidence for r-FOV and f-FOV DWI. The objective features included the region of interest (ROI) signal intensity of the cervical lesion (SIlesion) and gluteus maximus muscle (SIgluteus), standard deviation of the background noise (SDbackground), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The differences of measured apparent diffusion coefficient (ADC) values between the two examinations in pathological grades and FIGO tumor stages were compared. RESULTS: A total of 200 patients were included (170 with squamous cell carcinoma and 30 with adenocarcinoma). The scores of anatomical features, magnetic susceptibility artifacts, visual distortion, and overall diagnostic confidence for r-FOV DWI were significantly higher than those for f-FOV DWI. There was no difference in SNR and CNR between r-FOV DWI and f-FOV DWI. There were significant differences in ADC values between the two groups in all comparisons (P < 0.05). CONCLUSION: Compared with f-FOV DWI, r-FOV DWI might provide clearer imaging, fewer artifacts, less distortion, and higher image quality for the diagnosis of CC and might assist in the detection of CC.


Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/diagnostic imaging , Signal-To-Noise Ratio , Diffusion Magnetic Resonance Imaging/methods , Adenocarcinoma/diagnostic imaging , Reproducibility of Results , Echo-Planar Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...