Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Nat Commun ; 15(1): 6513, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095429

ABSTRACT

Constructing a ocean Internet of Things requires an essential ocean environment monitoring system. However, the widely distributed existing ocean monitoring sensors make it impractical to provide power and transmit monitored information through cables. Therefore, ocean environment monitoring systems particularly need a continuous power supply and wireless transmission capability for monitoring information. Consequently, a high-strength, environmentally multi-compatible, floatable metamaterial energy harvesting device has been designed through integrated dynamic matching optimization of materials, structures, and signal transmission. The self-powered monitoring system breaks through the limitations of cables and batteries in the ultra-low-frequency wave environment (1 to 2 Hz), enabling real-time monitoring of various ocean parameters and wirelessly transmitting the data to the cloud for post-processing. Compared with solar and wind energy in the ocean environment, the energy harvesting device based on the defective state characteristics of metamaterials achieves a high-energy density (99 W/m3). For the first time, a stable power supply for the monitoring system has been realized in various weather conditions (24 h).

2.
Risk Anal ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39074840

ABSTRACT

We constructed a rapid infection risk assessment model for contacts of COVID-19. The improved Wells-Riley model was used to estimate the probability of infection for contacts of COVID-19 in the same place and evaluate their risk grades. We used COVID-19 outbreaks that were documented to validate the accuracy of the model. We analyzed the relationship between controllable factors and infection probability and constructed common scenarios to analyze the infection risk of contacts in different scenarios. The model showed the robustness of the fitting (mean relative error = 5.89%, mean absolute error = 2.03%, root mean squared error = 2.03%, R2 = 0.991). We found that improving ventilation from poorly ventilated to naturally ventilated and wearing masks can reduce the probability of infection by about two times. Contacts in places of light activity, loud talking or singing, and heavy exercise, oral breathing (e.g., gyms, KTV, choirs) were at higher risk of infection. The model constructed in this study can quickly and accurately assess the infection risk grades of COVID-19 contacts. Simply opening doors and windows for ventilation can significantly reduce the risk of infection in certain places. The places of light activity, loud talking or singing, and heavy exercise, oral breathing, should pay more attention to prevent and control transmission of the epidemic.

3.
Mil Med Res ; 11(1): 36, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863031

ABSTRACT

BACKGROUND: Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS: Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS: A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION: Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.


Subject(s)
Enhancer Elements, Genetic , Neoplasms , Quantitative Trait Loci , Humans , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Colorectal Neoplasms/genetics , Case-Control Studies , RNA/genetics , China , Enhancer RNAs
4.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38780388

ABSTRACT

Atom-interferometer gyroscopes have attracted much attention for their long-term stability and extremely low drift. For such high-precision instruments, self-calibration to achieve an absolute rotation measurement is critical. In this work, we propose and demonstrate the self-calibration of an atom-interferometer gyroscope. This calibration is realized by using the detuning of the laser frequency to control the atomic velocity, thus modulating the scale factor of the gyroscope. The modulation determines the order and the initial phase of the interference stripe, thus eliminating the ambiguity caused by the periodicity of the interferometric signal. This self-calibration method is validated through a measurement of the Earth's rotation rate, and a relative uncertainty of 162 ppm is achieved. Long-term stable and self-calibrated atom-interferometer gyroscopes have important applications in the fields of fundamental physics, geophysics, and long-time navigation.

5.
Article in English | MEDLINE | ID: mdl-38719166

ABSTRACT

OBJECTIVE: To investigate the effects of physiotherapeutic scoliosis-specific exercises (PSSE) on coronal, horizontal, and sagittal deformities of the spine in adolescent idiopathic scoliosis (AIS) as well as how curve severity, intervention duration, and intervention type could modify these effects. DATA SOURCES: Data sources included PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases, which were searched from their inception to September 5, 2023. STUDY SELECTION: Clinical controlled trials reporting the effects of PSSE on the Cobb angle, angle of trunk rotation (ATR), thoracic kyphosis (TK), or lumbar lordosis in patients with AIS aged 10-18 years. The experimental groups received PSSE; the control groups received standard care (observation or bracing) or conventional exercise such as core stabilization exercise, Pilates, proprioceptive neuromuscular facilitation, and other nonspecific exercises. DATA EXTRACTION: Two researchers independently extracted key information from eligible studies. The quality of the studies was assessed using the Cochrane Handbook version 5.1.0 risk of bias assessment and the JBI Center for Evidence-Based Health Care (2016) of quasi-experimental research authenticity assessment tool. The level and certainty of evidence were rated according to the Grading of Recommendations, Assessment, Development, and Evaluation framework. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The protocol for this study was registered in PROSPERO (CRD42023404996). DATA SYNTHESIS: Twelve randomized controlled trials (RCTs) and 5 non-RCTs were meta-analyzed separately. The results indicated that compared with other nonsurgical management, PSSE significantly improved the Cobb angle, ATR, and TK, whereas the lumbar lordosis improvement was not statistically significant. Additionally, the efficacy of PSSE on Cobb angle was not significant in patients with curve severity ≥30° compared with controls. Nevertheless, the pooled effect of PSSE on Cobb angle was not significantly modified by intervention duration and intervention type and that on ATR was not significantly modified by intervention duration. The overall quality of evidence according to Grading of Recommendations, Assessment, Development, and Evaluation was moderate to low for RCT and very low for non-RCT. CONCLUSIONS: PSSE exhibited positive benefits on the Cobb angle, ATR, and TK in patients with AIS compared with other nonsurgical therapies. In addition, the effectiveness of PSSE may be independent of intervention duration and intervention type but may be influenced by the initial Cobb angle. However, more RCTs are needed in the future to validate the efficacy of PSSE in moderate AIS with a mean Cobb angle ≥30°. Current evidence is limited by inconsistent control group interventions and small sample size of the studies.

6.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612752

ABSTRACT

Excessive sodium intake is associated with nephrolithiasis, but the impact of sodium-deficient (SD) diets is unknown. Hence, we investigated the effects of short- and long-term SD diets on the expression of renal aquaporins and sodium transporters, and thus calcium oxalate (CaOx) crystal formation in hyperoxaluria rats. In a short-term sodium balance study, six male rats received drinking water and six received 0.75% ethylene glycol (EG) to induce hyperoxaluria. After a 30-day period of feeding on normal chow, both groups were treated with a normal-sodium diet for 5 days, followed by a sodium-free diet for the next 5 days. In a long-term SD study (42 days), four groups, induced with EG or not, were treated with normal-sodium water and sodium-free drinking water, alternately. Short-term sodium restriction in EG rats reversed the daily positive sodium balance, but progressively caused a negative cumulative water balance. In the long-term study, the abundant levels of of Na/H exchanger, thiazide-sensitive Na-Cl cotransporter, Na-K-ATPase, and aquaporins-1 from SD + EG rats were markedly reduced, corresponding to a decrease in Uosm, as compared to SD rats. Increased urine calcium, AP(CaOx)index, and renal CaOx deposition were also noted in SD + EG rats. Although the SD treatment reduced sodium excretion, it also increased urinary calcium and impaired renal function, ultimately causing the formation of more CaOx crystals.


Subject(s)
Drinking Water , Hypercalcemia , Hyperoxaluria , Hyponatremia , Male , Animals , Rats , Sodium , Calcium Oxalate , Calcium , Kidney
7.
J Oral Microbiol ; 16(1): 2334578, 2024.
Article in English | MEDLINE | ID: mdl-38562512

ABSTRACT

Objectives: This study aims to clarify the effect of ferroptosis by P. gingivalis on periodontal epithelium impairment and potential mechanisms. Materials and methods: The expression of epithelial junction proteins (CDH1, OCLN, ZO-1), FTL and GPX4 in healthy and periodontitis tissues was analyzed using bioinformatics analysis and validated in vivo. An in vitro model was constructed to evaluate ferroptosis by mitochondria morphology, content of iron and GSH, and level of lipid peroxidation, FTL, GPX4 and SLC7A11. The iron concentration was changed with iron chelator DFO and iron supplementation FAC. The epithelial impairment was assessed by protein expression. To investigate the mechanism, si-MYB (a negative transcription factor of SLC7A11) and GPX4 inhibitor RSL3 were employed. Results: CDH1, OCLN, ZO-1 and GPX4 expression was decreased, while FTL expression was elevated in periodontitis tissues. Infected cells showed ferroptosis change of the mitochondria with higher level of lipid peroxidation, iron, FTL and lower level of GPX4, GSH, SLC7A11. FAC augmented ferroptosis and weakened epithelial junction, while DFO exhibited a counteractive effect. Silencing MYB rescued SLC7A11, GPX4 and epithelial junction proteins, which was hindered by RSL3. Conclusions: Our study demonstrated that P. gingivalis weakened the oral epithelial barrier by causing ferroptosis via inhibiting SLC7A11/GSH/GPX4 axis.

8.
Int J Biol Macromol ; 268(Pt 1): 131729, 2024 May.
Article in English | MEDLINE | ID: mdl-38653429

ABSTRACT

In this case, various characterization technologies have been employed to probe dissociation mechanism of cellulose in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system. These results indicate that coordination of DMAc ligands to the Li+-Cl- ion pair results in the formation of a series of Lix(DMAc)yClz (x = 1, 2; y = 1, 2, 3, 4; z = 1, 2) complexes. Analysis of interaction between DMAc ligand and Li center indicate that Li bond plays a major role for the formation of these Lix(DMAc)yClz complexes. And the saturation and directionality of Li bond in these Lix(DMAc)yClz complexes are found to be a tetrahedral structure. The hydrogen bonds between two cellulose chains could be broken at the nonreduced end of cellulose molecule via combined effects of basicity of Cl- ion and steric hindrance of [Li (DMAc)4]+ unit. The unique feature of Li bond in Lix(DMAc)yClz complexes is a key factor in determination of the dissociation mechanism.


Subject(s)
Acetamides , Cellulose , Lithium Chloride , Cellulose/chemistry , Acetamides/chemistry , Lithium Chloride/chemistry , Lithium/chemistry , Hydrogen Bonding
9.
Poult Sci ; 103(6): 103734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636201

ABSTRACT

Dietary supplementation with bioactive substances that can regulate lipid metabolism is an effective approach for reducing excessive fat deposition in chickens. Genistein (GEN) has the potential to alleviate fat deposition; however, the underlying mechanism of GEN's fat-reduction action in chickens remains unclear. Therefore, the present study aimed to explore the underlying mechanism of GEN on the reduction of fat deposition from a novel perspective: intercellular transmission of adipokine between adipocytes and hepatocytes. The findings showed that GEN enhanced the secretion of adiponectin (APN) in chicken adipocytes, and the enhancement effect of GEN was completely blocked when the cells were pretreated with inhibitors targeting estrogen receptor ß (ERß) or proliferator-activated receptor γ (PPARγ) signals, respectively. Furthermore, the results demonstrated that both co-treatment with GEN and APN or treatment with the medium supernatant (Med SUP) derived from chicken adipocytes treated with GEN significantly decreased the content of triglyceride and increased the protein levels of ERß, Sirtuin 1 (SIRT1) and phosphor-AMP-activated protein kinase (p-AMPK) in chicken hepatocytes compared to the cells treated with GEN or APN alone. Moreover, the increase in the protein levels of SIRT1 and p-AMPK induced by GEN and APN co-treatment or Med SUP treatment were blocked in chicken hepatocytes pretreated with the inhibitor of ERß signals. Importantly, the up-regulatory effect of GEN and APN co-treatment or Med SUP treatment on the protein level of p-AMPK was also blocked in chicken hepatocytes pretreated with a SIRT1 inhibitor; however, the increase in the protein level of SIRT1 induced by GEN and APN co-treatment or Med SUP treatment was not reversed when the hepatocytes were pretreated with an AMPK inhibitor. In conclusion, the present study demonstrated that GEN enhanced APN secretion by activating the ERß-Erk-PPARγ signaling pathway in chicken adipocytes. Subsequently, adipocyte-derived APN synergized with GEN to activate the ERß-mediated SIRT1-AMPK signaling pathway in chicken hepatocytes, ultimately reducing fat deposition. These findings provide substantial evidence from a novel perspective, supporting the potential use of GEN as a dietary supplement to prevent excessive fat deposition in poultry.


Subject(s)
Adiponectin , Chickens , Estrogen Receptor beta , Genistein , Hepatocytes , Signal Transduction , Sirtuin 1 , Animals , Genistein/pharmacology , Genistein/administration & dosage , Hepatocytes/drug effects , Hepatocytes/metabolism , Sirtuin 1/metabolism , Estrogen Receptor beta/metabolism , Signal Transduction/drug effects , Adiponectin/metabolism , AMP-Activated Protein Kinases/metabolism , Avian Proteins/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects
10.
Huan Jing Ke Xue ; 45(3): 1644-1654, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471876

ABSTRACT

In order to explore the effects of continuous annual crop rotation and fallow on aggregate stability and organic carbon content in red soil, the red soil in sloping farmland was taken as the research object, and the water-stable aggregates and organic carbon content were determined using the wet sieve method and potassium dichromate-concentrated sulfuric acid external heating method, respectively. The changes in soil aggregate stability and organic carbon content under the four treatments of maize-vetch-maize rotation (M-V-M), maize-pea-maize rotation (M-P-M), maize-fallow-maize (M-F-M), and annual fallow (F-F-F) from 2020 to 2022 and the relationships between them were analyzed. The results showed that in 2021 and 2022, the contents of > 2 mm aggregates treated with F-F-F, M-V-M, and M-P-M were significantly increased by 67.01%-100.92%, 29.71%-33.67%, and 29.68%-38.07%, respectively, compared with that treated with M-F-M. In 2021 and 2022, the stability parameters of F-F-F and M-V-M were significantly higher than those of M-F-M (P < 0.05). The content of > 2 mm aggregates, geometric mean diameter (GMD), and mean weight diameter (MWD) under the M-V-M treatment and R0.25 (> 0.25 mm aggregate contents), MWD and > 2 mm aggregate contents under the F-F-F treatment increased with the increase in fallow years, whereas the content of 1-2 mm and < 0.25 mm under the F-F-F treatment decreased with the increase in fallow years. Both green manure rotation and fallow treatment could increase the SOC content, and the SOC content of F-F-F and M-V-M treatment increased with the extension in age. Correlation analysis showed that SOC content was significantly positively correlated with R0.25 and GMD under all treatments. R0.25 and GMD under the F-F-F treatment and GMD and MWD under M-V-M were significantly positively correlated with SOC content. The results showed that continuous annual crop rotation and fallow was beneficial to improve the content of soil macro-aggregates, aggregate stability, and SOC content, which could provide theoretical basis for the implementation of reasonable continuous annual crop rotation and fallow patterns and soil erosion control in red soil areas of sloping farmland in southern China.

11.
Infect Dis Ther ; 13(4): 813-826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498107

ABSTRACT

INTRODUCTION: The 2019 novel coronavirus (COVID-19) has been recognized as the most severe human infectious disease pandemic in the past century. To enhance our ability to control potential infectious diseases in the future, this study simulated the influence of nucleic acid testing on the transmission of COVID-19 across varied scenarios. Additionally, it assessed the demand for nucleic acid testing under different circumstances, aiming to furnish a decision-making foundation for the implementation of nucleic acid screening measures, the provision of emergency materials, and the allocation of human resources. METHODS: Considering the transmission dynamics of COVID-19 and the preventive measures implemented by countries, we explored three distinct levels of epidemic intensity: community transmission, outbreak, and sporadic cases. Integrating the theory of scenario analysis, we formulated six hypothetical epidemic scenarios, each corresponding to possible occurrences during different phases of the pandemic. We developed an improved SEIR model, validated its accuracy using real-world data, and conducted a comprehensive analysis and prediction of COVID-19 infections under these six scenarios. Simultaneously, we assessed the testing resource requirements associated with each scenario. RESULTS: We compared the predicted number of infections simulated by the modified SEIR model with the actual reported cases in Israel to validate the model. The root mean square error (RMSE) was 350.09, and the R-squared (R2) was 0.99, indicating a well-fitted model. Scenario 4 demonstrated the most effective prevention and control outcomes. Strengthening non-pharmaceutical interventions and increasing nucleic acid testing frequency, even under low testing capacity, resulted in a delayed epidemic peak by 78 days. The proportion of undetected cases decreased from 77.83% to 31.21%, and the overall testing demand significantly decreased, meeting maximum demand even with low testing capacity. The initiation of testing influenced case detection probability. Under high testing capacity, increasing testing frequency elevated the detection rate from 36.40% to 77.83%. Nucleic acid screening proved effective in reducing the demand for testing resources under diverse epidemic prevention and control strategies. While effective interventions and nucleic acid screening measures substantially diminished the demand for testing-related resources, varying degrees of insufficient testing capacity may still persist. CONCLUSIONS: The nucleic acid detection strategy proves effective in promptly identifying and isolating infected individuals, thereby mitigating the infection peak and extending the time to peak. In situations with constrained testing capacity, implementing more stringent measures can notably decrease the number of infections and alleviate resource demands. The improved SEIR model demonstrates proficiency in predicting both reported and unreported cases, offering valuable insights for future infection risk assessments. Rapid evaluations of testing requirements across diverse scenarios can aptly address resource limitations in specific regions, offering substantial evidence for the formulation of future infectious disease testing strategies.

12.
ACS Infect Dis ; 10(4): 1152-1161, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38442009

ABSTRACT

Periodontitis, a chronic infectious disease in periodontal tissues, is characterized by an imbalance of alveolar bone resorption and remodeling, which eventually results in tooth loosening and even tooth loss. The etiology of periodontitis is polymicrobial synergy and dysbiosis, in which Porphyromonas gingivalis (P. gingivalis) is one of the primary pathogens responsible for periodontitis progression. The interplay of EphrinB2/EphB4 is crucial for osteoblast-osteoclast communication during bone remodeling and healing. This study investigates the mechanism of EphB4/EphrinB2 transduction modulating osteogenesis inhibition and bone resorption in periodontitis induced by P. gingivalis. An in vivo model of chronic periodontitis provoked by P. gingivalis was constructed, the inflammation and bone resorption were evaluated. The expression of EphB4 and EphrinB2 proteins in periodontal tissues was detected, which was also evaluated, respectively, in osteoblasts and osteoclasts infected with P. gingivalis in vitro. Then, a simulated coculture model of osteoblasts and osteoclasts was established to activate the forward and reverse pathways of EphB4/EphrinB2 with P. gingivalis infection. This study showed that P. gingivalis infection promoted alveolar bone resorption in rats and enhanced EphB4 and EphrinB2 expression in periodontal tissues. EphB4 and molecules associated with osteogenesis in osteoblasts infected with P. gingivalis were inhibited, while EphrinB2 and osteoclast differentiation-related markers in osteoclasts were activated. In conclusion, this study suggested that EphB4/EphrinB2 proteins were involved in alveolar bone remodeling in the process of periodontitis induced by P. gingivalis infection. Moreover, attenuated EphB4/EphrinB2 with P. gingivalis infection weakened osteoblast activity and enhanced osteoclast activity.


Subject(s)
Bone Resorption , Periodontitis , Receptor, EphB2 , Receptor, EphB4 , Animals , Rats , Bone Resorption/genetics , Bone Resorption/metabolism , Bone Resorption/microbiology , Osteoclasts/metabolism , Periodontitis/microbiology , Porphyromonas gingivalis/metabolism , Receptor, EphB4/genetics , Receptor, EphB4/metabolism , Signal Transduction , Receptor, EphB2/metabolism , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology
13.
Cell Prolif ; 57(6): e13609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351596

ABSTRACT

The association between Porphyromonas gingivalis infection and oral squamous cell carcinoma (OSCC) has been established by numerous epidemiological studies. However, the underlying mechanism specific to this connection remains unclear. By bioinformatical analysis, we identified ZFP36 as a potentially significant co-expressed gene in both the OSCC gene database and the persistent infection model of P. gingivalis. To further investigate the role of ZFP36, we established a cell model that human immortalized oral epithelial cells (HIOECs) that were sustainedly infected by P. gingivalis (MOI = 1) for a duration of 30 weeks. Our findings indicated that sustained infection with P. gingivalis inhibited the expression of ZFP36 protein and induced changes in the biological behaviour of HIOECs. The mechanism investigation demonstrated the potential role of ZFP36 in regulating the cancer-related biological behaviour of HIOECs. Subsequent studies revealed that highly expressed CCAT1 could serve as a molecular scaffold in the formation of the ZFP36/CCAT1/MK2 complex. This complex formation enhanced the binding abundance of MK2 and ZFP36, thereby promoting the inhibition of ZFP36 protein phosphorylation. To summarize, low expression of ZFP36 protein under persistent P. gingivalis infection enhances the cancer-related biological behaviour of HIOECs.


Subject(s)
Bacteroidaceae Infections , Epithelial Cells , Porphyromonas gingivalis , Tristetraprolin , Humans , Porphyromonas gingivalis/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/metabolism , Tristetraprolin/metabolism , Tristetraprolin/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/microbiology , Mouth Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/microbiology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Phosphorylation
14.
BMC Infect Dis ; 24(1): 200, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355468

ABSTRACT

BACKGROUND: A lack of health resources is a common problem after the outbreak of infectious diseases, and resource optimization is an important means to solve the lack of prevention and control capacity caused by resource constraints. This study systematically evaluated the similarities and differences in the application of coronavirus disease (COVID-19) resource allocation models and analyzed the effects of different optimal resource allocations on epidemic control. METHODS: A systematic literature search was conducted of CNKI, WanFang, VIP, CBD, PubMed, Web of Science, Scopus and Embase for articles published from January 1, 2019, through November 23, 2023. Two reviewers independently evaluated the quality of the included studies, extracted and cross-checked the data. Moreover, publication bias and sensitivity analysis were evaluated. RESULTS: A total of 22 articles were included for systematic review; in the application of optimal allocation models, 59.09% of the studies used propagation dynamics models to simulate the allocation of various resources, and some scholars also used mathematical optimization functions (36.36%) and machine learning algorithms (31.82%) to solve the problem of resource allocation; the results of the systematic review show that differential equation modeling was more considered when testing resources optimization, the optimization function or machine learning algorithm were mostly used to optimize the bed resources; the meta-analysis results showed that the epidemic trend was obviously effectively controlled through the optimal allocation of resources, and the average control efficiency was 0.38(95%CI 0.25-0.51); Subgroup analysis revealed that the average control efficiency from high to low was health specialists 0.48(95%CI 0.37-0.59), vaccines 0.47(95%CI 0.11-0.82), testing 0.38(95%CI 0.19-0.57), personal protective equipment (PPE) 0.38(95%CI 0.06-0.70), beds 0.34(95%CI 0.14-0.53), medicines and equipment for treatment 0.32(95%CI 0.12-0.51); Funnel plots and Egger's test showed no publication bias, and sensitivity analysis suggested robust results. CONCLUSION: When the data are insufficient and the simulation time is short, the researchers mostly use the constructor for research; When the data are relatively sufficient and the simulation time is long, researchers choose differential equations or machine learning algorithms for research. In addition, our study showed that control efficiency is an important indicator to evaluate the effectiveness of epidemic prevention and control. Through the optimization of medical staff and vaccine allocation, greater prevention and control effects can be achieved.


Subject(s)
COVID-19 , Resource Allocation , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Machine Learning , Algorithms
16.
J Control Release ; 365: 89-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981052

ABSTRACT

A recent development in cancer chemotherapy is to use cytotoxics to induce tumor-specific immune response through immunogenic cell death (ICD). In ICD, calreticulin is translocated from endoplasmic reticulum to cell membrane (ecto-CRT) which serves as the 'eat-me-signal' to antigen-presenting cells. Ecto-CRT measurements, e.g., by ecto-CRT immunostaining plus flow cytometry, can be used to study the pharmacodynamics of ICD in single cells, whereas ICD studies in intact 3-dimensional tissues such as human tumors require different approaches. The present study described a method that used (a) immunostaining with fluorescent antibodies followed by confocal microscopy to obtain the spatial locations of two molecules-of-interest (CRT and a marker protein WGA), and (b) machine-learning (trainable WEKA segmentation) and additional image processing tools to locate the target molecules, remove the interfering signals in the nucleus, cytosol and extracellular space, enable the distinction of the inner and outer edges of the cell membrane and thereby identify the cells with ecto-CRT. This method, when applied to 3-dimensional human bladder cancer cell spheroids, yielded drug-induced ecto-CRT measurements that were qualitatively comparable to the flow cytometry results obtained with single cells disaggregated from spheroids. This new method was applied to study drug-induced ICD in short-term cultures of surgical specimens of human patient bladder tumors.


Subject(s)
Antineoplastic Agents , Urinary Bladder Neoplasms , Humans , Immunogenic Cell Death , Antineoplastic Agents/therapeutic use , Cell Membrane/metabolism , Urinary Bladder Neoplasms/drug therapy , Protein Transport , Cell Line, Tumor
17.
Poult Sci ; 103(1): 103251, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984004

ABSTRACT

The objective of this study was to investigate the preventive effects and mechanisms of genistein (GEN) on production performance and metabolic disorders in broilers under chronic heat stress (HS). A total of 120 male 3-wk-old Ross broilers were randomly assigned to 5 groups: a thermoneutral zone (TN) group maintained at normal temperature (21°C ± 1°C daily), an HS group subjected to cyclic high temperature (32°C ± 1°C for 8 h daily), and 3 groups exposed to HS with varying doses of GEN (50, 100, or 150 mg/kg diet). The experimental period lasted for 3 wk. Here, HS led to a decline in growth performance parameters and hormone secretion disorders (P < 0.05), which were improved by 100 and 150 mg/kg GEN treatment (P < 0.05). Moreover, the HS-induced increases in the liver index (P < 0.01) and abdominal fat rate (P < 0.05) were attenuated by 150 mg/kg GEN (P < 0.05). The HS-induced excessive lipid accumulation in the liver and serum (P < 0.01) was ameliorated after 100 and 150 mg/kg GEN treatment (P < 0.05). Furthermore, the HS-induced decreases in lipolysis-related mRNA levels and increases in lipid synthesis-related mRNA levels in the liver (P < 0.01) were effectively blunted after 100 and 150 mg/kg GEN treatment (P < 0.05). Importantly, the HS-stimulated hepatic mitochondrial energetic dysfunction and decreases in the mRNA or protein levels of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A in the liver were ameliorated by 150 mg/kg GEN (P < 0.05). Moreover, 50 to 150 mg/kg GEN treatment resulted in a significant increase in the mRNA or protein levels of G protein-coupled estrogen receptor (GPR30), AMP-activated protein kinase (AMPK) α1, phosphorylated AMPKα, and phosphorylated acetyl-CoA carboxylase α. Collectively, GEN alleviated metabolic disorders and hepatic mitochondrial energetic dysfunction under HS, possibly through the activation of GPR30-AMPM-PGC-1α pathways. These data provide a sufficient basis for GEN as an additive to alleviate HS in broilers.


Subject(s)
Heat Stress Disorders , Lipid Metabolism Disorders , Animals , Male , Chickens/physiology , AMP-Activated Protein Kinases/metabolism , Genistein/pharmacology , Genistein/metabolism , Lipid Metabolism , Liver/metabolism , Heat-Shock Response , Heat Stress Disorders/drug therapy , Heat Stress Disorders/veterinary , Signal Transduction , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , RNA, Messenger/metabolism , Lipids
18.
Org Lett ; 26(1): 153-159, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38133484

ABSTRACT

Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.

19.
Sci Rep ; 13(1): 17686, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848540

ABSTRACT

Urolithiasis is associated with an increased risk of chronic kidney disease (CKD), irrespective of stone compositions. Chronic inflammation is an important factor for CKD progression. Neutrophil-to-lymphocyte ratio (NLR) has been recognized as a reliable biomarker of inflammation, yet its use in predicting renal deterioration in patients with urolithiasis remains limited. We aimed to explore whether the combination of stone composition and NLR could be useful as a predictor for CKD risk. A total of 336 stone formers with at least one stone submission for analysis were enrolled in the retrospective study. Stones were classified into uric acid and calcium groups. Renal functions were assessed at least one month after stone treatment. Uric acid stone formers had significantly lower estimated glomerular filtration rate (eGFR) compared with calcium stone formers (p < 0.001). NLR was significantly higher in uric acid stone formers (p = 0.005), and a significantly negative correlation (p < 0.001) between NLR and eGFR had been observed only in uric acid stone group. Univariate and multivariate logistic regression analyses showed that higher proportion of uric acid stone composition and higher NLR were both significantly associated with CKD risks. A nomogram integrating independent predictors was generated for CKD prediction, yielding an AUC of 0.811 (0.764-0.858). In conclusion, our study demonstrated that stone formers with higher proportion of uric acid composition and higher NLR levels were associated with higher CKD risk.


Subject(s)
Kidney Calculi , Renal Insufficiency, Chronic , Urolithiasis , Humans , Uric Acid , Calcium , Retrospective Studies , Neutrophils , Kidney Calculi/complications , Renal Insufficiency, Chronic/complications , Urolithiasis/complications , Inflammation/complications , Lymphocytes
20.
Heliyon ; 9(10): e20861, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860512

ABSTRACT

Objective: We aimed to use network meta-analysis to compare the impact of infection risk factors of close contacts with COVID-19, identify the most influential factors and rank their subgroups. It can provide a theoretical basis for the rapid and accurate tracking and management of close contacts. Methods: We searched nine databases from December 1, 2019 to August 2, 2023, which only took Chinese and English studies into consideration. Odd ratios (ORs) were calculated from traditional meta-estimated secondary attack rates (SARs) for different risk factors, and risk ranking of these risk factors was calculated by the surface under the cumulative ranking curve (SUCRA). Results: 25 studies with 152647 participants identified. Among all risk factors, the SUCRA of type of contact was 69.6 % and ranked first. Among six types of contact, compared with transportation contact, medical contact, social contact and other, daily contact increased risk of infection by 12.11 (OR: 12.11, 95 % confidence interval (CI): 6.51-22.55), 7.76 (OR: 7.76, 95 % CI: 4.09-14.73), 4.65 (OR: 4.65, 95 % CI: 2.66-8.51) and 8.23 OR: 8.23, 95 % CI: 4.23-16.01) times, respectively. Overall, SUCRA ranks from highest to lowest as daily contact (94.7 %), contact with pollution subjects (78.4 %), social contact (60.8 %), medical contact (31.8 %), other (27.9 %), transportation contact (6.4 %). Conclusion: The type of contact had the greatest impact on COVID-19 close contacts infection among the risk factors we included. Daily contact carried the greatest risk of infection among six types of contact, followed by contact with pollution subjects, social contact, other, medical contact and transportation contact. The results can provide scientific basis for rapid assess the risk of infection among close contacts based on fewer risk factors and pay attention to high-risk close contacts during management, thereby reducing tracking and management costs.

SELECTION OF CITATIONS
SEARCH DETAIL