Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 16(8): 1606-1612, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33433491

ABSTRACT

In a previous study, we used natural butterfly wings as a cell growth matrix for tissue engineering materials and found that the surface of different butterfly wings had different ultramicrostructures, which can affect the qualitative growth of cells and regulate cell growth, metabolism, and gene expression. However, the biocompatibility and biosafety of butterfly wings must be studied. In this study, we found that Sprague-Dawley rat dorsal root ganglion neurons could grow along the structural stripes of butterfly wings, and Schwann cells could normally attach to and proliferate on different species of butterfly wings. The biocompatibility and biosafety of butterfly wings were further examined through subcutaneous implantation in Sprague-Dawley rats, intraperitoneal injection in Institute of Cancer Research mice, intradermal injection in rabbits, and external application to guinea pigs. Our results showed that butterfly wings did not induce toxicity, and all examined animals exhibited normal behaviors and no symptoms, such as erythema or edema. These findings suggested that butterfly wings possess excellent biocompatibility and biosafety and can be used as a type of tissue engineering material. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.

2.
Neural Regen Res ; 15(6): 1086-1093, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31823889

ABSTRACT

Glutamate-induced excitotoxicity plays a critical role in the neurological impairment caused by middle cerebral artery occlusion. Achyranthes bidentata polypeptides have been shown to protect against neurological functional damage caused by middle cerebral artery occlusion, but the underlying neuroprotective mechanisms and the relationship to glutamate-induced excitotoxicity remain unclear. Therefore, in the current study, we investigated the protective effects of Achyranthes bidentata polypeptides against glutamate-induced excitotoxicity in cultured hippocampal neurons. Hippocampal neurons were treated with Mg2+-free extracellular solution containing glutamate (300 µM) for 3 hours as a model of glutamate-mediated excitotoxicity (glutamate group). In the normal group, hippocampal neurons were incubated in Mg2+-free extracellular solution. In the Achyranthes bidentata polypeptide group, hippocampal neurons were incubated in Mg2+-free extracellular solution containing glutamate (300 µM) and Achyranthes bidentata polypeptide at different concentrations. At 24 hours after exposure to the agents, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Hoechst 33258 staining were used to assess neuronal viability and nuclear morphology, respectively. Caspase-3 expression and activity were evaluated using western blot assay and colorimetric enzymatic assay, respectively. At various time points after glutamate treatment, reactive oxygen species in cells were detected by H2DCF-DA, and mitochondrial membrane potential was detected by rhodamine 123 staining. To examine the effect of Achyranthes bidentata polypeptides on glutamate receptors, electrophysiological recording was used to measure the glutamate-induced inward current in cultured hippocampal neurons. Achyranthes bidentata polypeptide decreased the percentage of apoptotic cells and reduced the changes in caspase-3 expression and activity induced by glutamate. In addition, Achyranthes bidentata polypeptide attenuated the amplitude of the glutamate-induced current. Furthermore, the glutamate-induced increase in intracellular reactive oxygen species and reduction in mitochondrial membrane potential were attenuated by Achyranthes bidentata polypeptide treatment. These findings collectively suggest that Achyranthes bidentata polypeptides exert a neuroprotective effect in cultured hippocampal neurons by suppressing the overactivation of glutamate receptors and inhibiting the caspase-3-dependent mitochondrial apoptotic pathway. All animal studies were approved by the Animal Care and Use Committee, Nantong University, China (approval No. 20120216-001) on February 16, 2012.

SELECTION OF CITATIONS
SEARCH DETAIL
...