Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(6): eabk1660, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138888

ABSTRACT

Quantum measurements cannot be thought of as revealing preexisting results, even when they do not disturb any other measurement in the same trial. This feature is called contextuality and is crucial for the quantum advantage in computing. Here, we report the observation of quantum contextuality simultaneously free of the detection, sharpness, and compatibility loopholes. The detection and sharpness loopholes are closed by adopting a hybrid two-ion system and highly efficient fluorescence measurements offering a detection efficiency of 100% and a measurement repeatability of >98%. The compatibility loophole is closed by targeting correlations between observables for two different ions in a Paul trap, a 171Yb+ ion and a 138Ba+ ion, chosen so measurements on each ion use different operation laser wavelengths, fluorescence wavelengths, and detectors. The experimental results show a violation of the bound for the most adversarial noncontextual models and open a way to certify quantum systems.

2.
Nat Commun ; 12(1): 233, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431845

ABSTRACT

Realizing a long coherence time quantum memory is a major challenge of current quantum technology. Until now, the longest coherence-time of a single qubit was reported as 660 s in a single 171Yb+ ion-qubit through the technical developments of sympathetic cooling and dynamical decoupling pulses, which addressed heating-induced detection inefficiency and magnetic field fluctuations. However, it was not clear what prohibited further enhancement. Here, we identify and suppress the limiting factors, which are the remaining magnetic-field fluctuations, frequency instability and leakage of the microwave reference-oscillator. Then, we observe the coherence time of around 5500 s for the 171Yb+ ion-qubit, which is the time constant of the exponential decay fit from the measurements up to 960 s. We also systematically study the decoherence process of the quantum memory by using quantum process tomography and analyze the results by applying recently developed resource theories of quantum memory and coherence. Our experimental demonstration will accelerate practical applications of quantum memories for various quantum information processing, especially in the noisy-intermediate-scale quantum regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...