Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2183, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449135

ABSTRACT

Glass-to-glass transitions are useful for us to understand the glass nature, but it remains difficult to tune the metallic glass into significantly different glass states. Here, we have demonstrated that the high-entropy can enhance the degree of disorder in an equiatomic high-entropy metallic glass NbNiZrTiCo and elevate it to a high-energy glass state. An unusual glass-to-glass phase transition is discovered during heating with an enormous heat release even larger than that of the following crystallization at higher temperatures. Dramatic atomic rearrangement with a short- and medium-range ordering is revealed by in-situ synchrotron X-ray diffraction analyses. This glass-to-glass transition leads to a significant improvement in the modulus, hardness, and thermal stability, all of which could promote their applications. Based on the proposed high-entropy effect, two high-entropy metallic glasses are developed and they show similar glass-to-glass transitions. These findings uncover a high-entropy effect in metallic glasses and create a pathway for tuning the glass states and properties.

3.
Nature ; 602(7896): 251-257, 2022 02.
Article in English | MEDLINE | ID: mdl-35140390

ABSTRACT

The development of high-performance ultraelastic metals with superb strength, a large elastic strain limit and temperature-insensitive elastic modulus (Elinvar effect) are important for various industrial applications, from actuators and medical devices to high-precision instruments1,2. The elastic strain limit of bulk crystalline metals is usually less than 1 per cent, owing to dislocation easy gliding. Shape memory alloys3-including gum metals4,5 and strain glass alloys6,7-may attain an elastic strain limit up to several per cent, although this is the result of pseudo-elasticity and is accompanied by large energy dissipation3. Recently, chemically complex alloys, such as 'high-entropy' alloys8, have attracted tremendous research interest owing to their promising properties9-15. In this work we report on a chemically complex alloy with a large atomic size misfit usually unaffordable in conventional alloys. The alloy exhibits a high elastic strain limit (approximately 2 per cent) and a very low internal friction (less than 2 × 10-4) at room temperature. More interestingly, this alloy exhibits an extraordinary Elinvar effect, maintaining near-constant elastic modulus between room temperature and 627 degrees Celsius (900 kelvin), which is, to our knowledge, unmatched by the existing alloys hitherto reported.

4.
Science ; 369(6502): 427-432, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32703875

ABSTRACT

Alloys that have high strengths at high temperatures are crucial for a variety of important industries including aerospace. Alloys with ordered superlattice structures are attractive for this purpose but generally suffer from poor ductility and rapid grain coarsening. We discovered that nanoscale disordered interfaces can effectively overcome these problems. Interfacial disordering is driven by multielement cosegregation that creates a distinctive nanolayer between adjacent micrometer-scale superlattice grains. This nanolayer acts as a sustainable ductilizing source, which prevents brittle intergranular fractures by enhancing dislocation mobilities. Our superlattice materials have ultrahigh strengths of 1.6 gigapascals with tensile ductilities of 25% at ambient temperature. Simultaneously, we achieved negligible grain coarsening with exceptional softening resistance at elevated temperatures. Designing similar nanolayers may open a pathway for further optimization of alloy properties.

5.
Sci Rep ; 6: 21364, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26892834

ABSTRACT

The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...