Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Curr Biol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692276

ABSTRACT

Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.

2.
Cell Death Discov ; 10(1): 89, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374196

ABSTRACT

The Fscn2 (Fascin2) gene encodes an actin cross-linking protein that is involved in the formation of hair cell stereocilia and retina structure. Mutations in Fscn2 gene have been linked to hearing impairment and retinal degeneration in humans and mice. To understand the function of the Fscn2 gene, we generated the Fscn2 knockout mice, which showed progressive loss of hearing and hair cells. Our goal of the present study was to investigate the mechanism underlying cochlear cell death in the Fscn2 knockout mice. Microarray analysis revealed upregulation of expression of PARVB, a local adhesion protein, in the inner ears of Fscn2 knockout mice at 8 weeks of age. Further studies showed increased levels of PARVB together with cleaved-Caspase9 and decreased levels of ILK, p-ILK, p-AKT, and Bcl-2 in the inner ears of Fscn2 knockout mice of the same age. Knockdown of Fscn2 in HEI-OCI cells led to decreased cell proliferation ability and migration rate, along with increased levels of PARVB and decreased levels of ILK, p-ILK, p-AKT, Bcl-2 and activated Rac1 and Cdc42. Overexpression of Fscn2 or inhibition of Parvb expression in HEI-OC1 cells promoted cell proliferation and migration, with increased levels of ILK, p-ILK, p-AKT, and Bcl-2. Finally, FSCN2 binds with PPAR-γ to reduce its nuclear translocation in HEI-OC1 cells, and inhibition of PPAR-γ by GW9662 decreased the level of PARVB and increased the levels of p-AKT, p-ILK, and Bcl-2. Our results suggest that FSCN2 negatively regulates PARVB expression by inhibiting the entry of PPAR-γ into the cell nucleus, resulting in inhibition of ILK-AKT related pathways and of cochlear cell survival in Fscn2 knockout mice. Our findings provide new insights and ideas for the prevention and treatment of genetic hearing loss.

3.
Annu Rev Entomol ; 69: 81-98, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270981

ABSTRACT

Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.


Subject(s)
Hemiptera , Peptidoglycan , Animals , Hemiptera/genetics , Hemiptera/microbiology , Insecta , Bacteria/genetics , Symbiosis/physiology
4.
Sci Data ; 10(1): 585, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673910

ABSTRACT

Hymenoptera is an order accounting for a large proportion of species in Insecta, among which Chalcidoidea contains many parasitoid species of biocontrol significance. Currently, some species genomes in Chalcidoidea have been assembled, but the chromosome-level genomes of Aphelinidae are not yet available. Using Illumina, PacBio HiFi and Hi-C technologies, we assembled a genome assembly of Eretmocerus hayati (Aphelinidae, Hymenoptera), a worldwide biocontrol agent of whiteflies, at the chromosome level. The assembled genome size is 692.1 Mb with a contig N50 of 7.96 Mb. After Hi-C scaffolding, the contigs was assembled onto four chromosomes with a mapping rate of > 98%. The scaffold N50 length is 192.5 Mb, and Benchmarking Universal Single-Copy Orthologues (BUSCO) value is 95.9%. The genome contains 370.8 Mb repeat sequences and total of 24471 protein coding genes. P450 gene families were identified and analyzed. In conclusion, our chromosome-level genome assembly provides valuable support for future research on the evolution of parasitoid wasps and the interaction between hosts and parasitoid wasps.


Subject(s)
Genome , Wasps , Animals , Benchmarking , Wasps/genetics
5.
Aging Cell ; 22(10): e13965, 2023 10.
Article in English | MEDLINE | ID: mdl-37641521

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) level has been associated with various age-related diseases and its pharmacological modulation emerges as a potential approach for aging intervention. But human NAD+ landscape exhibits large heterogeneity. The lack of rapid, low-cost assays limits the establishment of whole-blood NAD+ baseline and the development of personalized therapies, especially for those with poor responses towards conventional NAD+ supplementations. Here, we developed an automated NAD+ analyzer for the rapid measurement of NAD+ with 5 µL of capillary blood using recombinant bioluminescent sensor protein and automated optical reader. The minimal invasiveness of the assay allowed a frequent and decentralized mapping of real-world NAD+ dynamics. We showed that aerobic sport and NMN supplementation increased whole-blood NAD+ and that male on average has higher NAD+ than female before the age of 50. We further revealed the long-term stability of human NAD+ baseline over 100 days and identified major real-world NAD+ -modulating behaviors.


Subject(s)
NAD , Nicotinamide Mononucleotide , Male , Female , Humans , NAD/metabolism , Nicotinamide Mononucleotide/pharmacology , Aging/physiology , Pyridinium Compounds
6.
Cell Rep ; 42(2): 112102, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36774548

ABSTRACT

Nutritional symbionts influence host reproduction, but the underlying molecular mechanisms are largely unclear. We previously found that the bacteriocyte symbiont Hamiltonella impacts the sex ratio of the whitefly Bemisia tabaci. Hamiltonella synthesizes folate by cooperation with the whitefly. Folate deficiency by Hamiltonella elimination or whitefly gene silencing distorted whitefly sex ratio, and folate supplementation restored the sex ratio. Hamiltonella deficiency or gene silencing altered histone H3 lysine 9 trimethylation (H3K9me3) level, which was restored by folate supplementation. Genome-wide chromatin immunoprecipitation-seq analysis of H3K9me3 indicated mitochondrial dysfunction in symbiont-deficient whiteflies. Hamiltonella deficiency compromised mitochondrial quality of whitefly ovaries. Repressing ovary mitochondrial function led to distorted whitefly sex ratio. These findings indicate that the symbiont-derived folate regulates host histone methylation modifications, which thereby impacts ovary mitochondrial function, and finally determines host sex ratio. Our study suggests that a nutritional symbiont can regulate animal reproduction in a way that differs from reproductive manipulators.


Subject(s)
Hemiptera , Animals , Female , Hemiptera/genetics , Sex Ratio , Symbiosis/genetics , Enterobacteriaceae/genetics , Folic Acid
7.
mBio ; 14(1): e0299022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36692332

ABSTRACT

Integration between animal reproduction and symbiont inheritance is fundamental in symbiosis biology, but the underlying molecular mechanisms are largely unknown. Vitellogenin (Vg) is critical for oogenesis, and it is also a pathogen pattern recognition molecule in some animals. Previous studies have shown that Vg is involved in the regulation of symbiont abundance and transmission. However, the mechanisms by which an insect and its symbiont contribute to the function of Vg and how Vg impacts the persistence of insect-microbe symbiosis remain largely unclear. Symbionts are transovarially transmitted via maternal inheritance of the bacteriocytes in the whitefly Bemisia tabaci. Surprisingly, Vg is localized in bacteriocytes of whiteflies. Vg could be synthesized in whitefly bacteriocytes by the gene Vg expressed in these cells or exported into bacteriocytes from hemolymph via the Vg receptor. We further found that the juvenile hormone and "Candidatus Portiera aleyrodidarum" (here termed Portiera) control the level and localization of Vg in whiteflies. Immunocapture PCR revealed interactions between Vg and Portiera. Suppressing Vg expression reduced Portiera abundance as well as whitefly oogenesis and fecundity. Thus, we reveal that Vg facilitated the persistence of whitefly-bacteriocyte symbiont associations. This study will provide insight into the key role of Vg in the coevolution of insect reproduction and symbiont inheritance. IMPORTANCE Intracellular heritable symbionts have been incorporated into insect reproductive and developmental biology by various mechanisms. All Bemisia tabaci species harbor the obligate symbiont Portiera in specialized insect cells called bacteriocytes. We report that the whitefly juvenile hormone and Portiera determined vitellogenin (Vg) localization in bacteriocytes of whiteflies. In turn, Vg affected whitefly fecundity as well as fitness and transmission of the symbiont. Our findings show that Vg, a multifunctional protein, is indispensable for symbiont integration into the reproduction and development of insects. This reflects the outcome of long-term coevolution of the insect-microbe symbiosis.


Subject(s)
Hemiptera , Vitellogenins , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Hemiptera/genetics , Symbiosis/genetics , Polymerase Chain Reaction
8.
Front Bioeng Biotechnol ; 11: 1330082, 2023.
Article in English | MEDLINE | ID: mdl-38173868

ABSTRACT

Background: Knee osteoarthritis (KOA) is a common degenerative disease among the older people that severely affects their daily life. Previous studies have confirmed that movement biomechanics are altered in patients with KOA during task performance. However, changes that occur in lower limb joints and muscles in the three planes during stand-to-sit (STS) tasks in patients with early-stage KOA are unclear. Method: Of the 36 participants recruited in this study, 24 (8 males and 16 females) and 12 (4 males and 8 females) were added to the KOA and control groups, respectively. The Nexus Vicon motion capture system along with Delsys wireless surface electromyography devices and plantar pressure measurement mat was used to record test data. A Visual 3D software was used to process the data and calculate the biomechanical and electromyographic parameters during STS tasks. Results: There was no significant difference in task duration between the two groups. Patients with KOA could perform a greater range of pelvic motion and smaller range of hip and knee joint motion with a lower maximum hip joint angular acceleration in the sagittal plane and greater knee and ankle joint motion in the coronal plane. There was no significant difference in the motion range in the horizontal plane. During the STS task, patients in the KOA group had a lower vertical ground reaction force (GRF) amplitude on the injured side but a higher integrated GRF on both sides than those in the control group. Moreover, patients with KOA demonstrated higher PERM and PABM of the lower limb joints and smaller knee PADM and ankle PEM. Additionally, maximum activation levels of GMed muscle, affected-side gluteus medius (GM), ST, rectus femoris (RF), and tibialis anterior (TA) muscles were lower in patients with KOA than in controls. Conversely, the activation level of biceps femoris (BF) was higher. Furthermore, the integral EMG values of GMed, GM, ST, VL, RF, vastus medialis VM, and TA muscles on the affected side were lower, except for the BF muscle, in patients with KOA. Conclusion: Compared with the participants in the control group, patients with early-stage KOA exhibited consistent changes in sEMG parameters and biomechanical alterations in the sagittal plane, as observed in previous studies. However, differences in parameters were observed in the coronal and transverse planes of these patients. The noninvasive analysis of the 3D parameters of the involved motion patterns may lead to the early detection of KOA.

9.
Proteome Sci ; 20(1): 14, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071491

ABSTRACT

BACKGROUND: Citrate Synthase (Cs) gene mutation (locus ahL4) has been found to play an important role in progressive hearing loss of A/J mice. HEI-OC1 cells have been widely used as an in vitro system to study cellular and molecular mechanisms related to hearing lose. We previously reported the increased apoptosis and the accumulation of reactive oxygen species in shRNACs-1429 cells, a Cs low-expressed cell model from HEI-OCI. The details of the mechanism of ROS production and apoptosis mediated by the abnormal expression of Cs needed to research furtherly. METHODS: iTRAQ proteomics was utilized to detect the differentially expressed proteins (DEPs) caused by low expression of Cs. The GO and KEGG pathways analysis were performed for annotation of the differentially expressed proteins. Protein-protein interaction network was constructed by STRING online database. Immunoblotting was utilized to confirm the protein levels of the the differentially expressed proteins. RESULTS: The differentially expressed proteins were significantly enriched in various signaling pathways mainly related to mitochondrial dysfunction diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, et al. Most noteworthy, the oxidative phosphorylation pathway was most significantly suppressed in the shRNACs-1429 cells,, in which a total of 10 differentially expressed proteins were enriched and were all downregulated by the abnormal expression of Cs. The downregulations of Ndufb5, Ndufv1 and Uqcrb were confirmed by immunoblotting. Meanwhile, the ATP levels of shRNACs-1429 cells were also reduced. CONCLUSIONS: These results suggest that low level expression of Cs induces the inhibition of oxidative phosphorylation pathway, which is responsible for the high level production of reactive oxygen species and low level of ATP, leading to the apoptosis of cochlear cells. This study may provide new theories for understanding and therapy of progressive hearing loss.

10.
Front Immunol ; 13: 894410, 2022.
Article in English | MEDLINE | ID: mdl-35958609

ABSTRACT

Background and aims: Precise predictors are lacking for hepatitis B surface antigen (HBsAg) clearance under the combination therapy of nucleos(t)ide analogs (NA) and pegylated interferon-alpha (PEG-IFN-α) in patients with chronic hepatitis B (CHB). This study aimed to determine the quantitative anti-hepatitis B core antibody (qAnti-HBc) and quantitative hepatitis B core-related antigen (qHBcrAg) as predictors for HBsAg clearance in NA-suppressed patients with CHB receiving PEG-IFN-α add-on therapy. Methods: Seventy-four CHB patients who achieved HBV DNA suppression (HBV DNA < 20 IU/ml) and quantitative HBsAg (qHBsAg) < 1,500 IU/ml after ≥1 year of NA treatment were enrolled. Fifteen patients continued on NA monotherapy, while 59 patients received PEG-IFN-α add-on therapy. Serum qAnti-HBc and qHBcrAg levels were detected every 12 or 24 weeks for add-on and NA-alone groups, respectively. Results: Serum qAnti-HBc but not qHBcrAg levels at baseline were negatively correlated with the duration of prior NA therapy. After 48-week treatment, both qAnti-HBc and qHBcrAg levels declined further, and 17/59 (28.81%) and 0/15 (0%) achieved HBsAg clearance in add-on and NA groups, respectively. In the add-on group, the rate of HBsAg clearance was significantly higher in patients with baseline qAnti-HBc < 0.1 IU/ml (52.63%). Logistic regression analysis identified baseline qAnti-HBc but not qHBcrAg, which was an independent predictor for HBsAg loss. Receiver operating characteristic curve analysis showed that the combination of qAnti-HBc and qHBsAg had a better predictive value for HBsAg clearance. Conclusions: A combination of qHBsAg and baseline qAnti-HBc levels may be a better prediction strategy for HBsAg clearance in NA-suppressed CHB patients receiving PEG-IFN-α add-on therapy.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B, Chronic , DNA, Viral , Hepatitis B Antibodies , Hepatitis B Core Antigens , Hepatitis B e Antigens , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Humans , Interferon-alpha/therapeutic use
11.
Biochem Biophys Res Commun ; 612: 134-140, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35525197

ABSTRACT

A/J mouse is a typical animal model of age-related deafness. Previous studies have shown that the mice suffer from progressive hearing loss and degeneration of cochlear cells, and a variation of H55 N in citrate synthase (CS) causes about 40% the hearing loss. CS is a key enzyme in the tricarboxylic acid cycle, which is transported from cytoplasm to mitochondria after synthesis, sorted by the mitochondrial targeting sequence (MTS). To explore the mechanism of CS (H55 N) variation in affecting its function, HEI-OC1 cells were infected with lentivirus particles to express CS-Flag or CS(H55 N)-Flag. The results showed that H55 N variation in CS, as purified by co-immunoprecipitation, decreased the enzyme activity by about 50%. Confocal microscope co-localization indicated that the CS (H55 N) variation led to a decrement in its mitochondrial content. Western blot also showed the amount of CS(H55 N)-Flag was more than that of CS(WT)-Flag in the cytosol. The results suggest H55 N variation in CS lead to decrement of its enzyme activity and targeting transport to mitochondria. We therefore conclude that decrement in CS activity and mitochondrial delivery contributes to the degeneration of cochlear cells and thus the hearing loss in A/J mice.


Subject(s)
Hearing Loss , Mitochondria , Animals , Citrate (si)-Synthase , Cochlea , Mice
13.
Mol Ecol ; 31(9): 2611-2624, 2022 05.
Article in English | MEDLINE | ID: mdl-35243711

ABSTRACT

Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but microRNAs (miRNAs) are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titre. Here, we found that a whitefly miRNA, novel-m0780-5p, was up-regulated and its target panBC was down-regulated in Portiera-eliminated whiteflies. This miRNA was located in the cytoplasmic region of whitefly bacteriocytes. Injection of novel-m0780-5p agomir reduced the expression of PanBC in whitefly bacteriocytes, while injection of novel-m0780-5p antagomir enhanced PanBC expression. Agomir injection also reduced the pantothenate level, Portiera titre and whitefly performance. Supplementation with pantothenate restored Portiera titre and the fitness of agomir-injected whiteflies. Thus, we demonstrate that a whitefly miRNA regulates panBC-mediated host-symbiont collaboration required for pantothenate synthesis, benefiting the whitefly-Portiera symbiosis. Both panBC and novel-m0780-5p are present in the genomes of six Bemisia tabaci species. The expression of a novel miRNA in multiple B. tabaci species suggests that the miRNA evolved after panBC acquisition, and allowed this gene to be more tightly regulated. Our discovery provides the first account of a HTG being regulated by a miRNA from the host genome, and suggests key roles for interactions between miRNAs and HTGs in the functioning of symbiosis.


Subject(s)
Halomonadaceae , Hemiptera , MicroRNAs , Animals , Halomonadaceae/genetics , Hemiptera/genetics , MicroRNAs/genetics , Symbiosis/genetics
14.
Cell Rep ; 38(9): 110455, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235797

ABSTRACT

Some symbiotic microbes are restricted to specialized host cells called bacteriocytes. However, the molecular and cellular mechanisms underlying the development of bacteriocytes are largely obscure. We find that maternally inherited bacteriocytes proliferate in adult females but degenerate in adult males of the whitefly Bemisia tabaci. Single-cell transcriptomics and immunohistochemistry reveal that cell division only occurs in the bacteriocytes of adult females, whereas autophagy and apoptosis are induced in the bacteriocytes of adult males. A transcription factor, Adf-1, enriched in bacteriocytes, is highly expressed in female bacteriocytes relative to male bacteriocytes. Silencing Adf-1 reduces the bacteriocyte number and Portiera titer and activates autophagy and apoptosis in females. The differential dynamics of both cell division and death in bacteriocytes and distinct expression of Adf-1 in bacteriocytes between whitefly sexes underlie the sexual differentiation of bacteriocyte development. Our study reveals that insect sex affects the development of bacteriocytes by cellular and molecular remodeling.


Subject(s)
Hemiptera , Animals , Cell Differentiation , Female , Hemiptera/metabolism , Male , Symbiosis , Transcription Factors/metabolism
15.
Appl Environ Microbiol ; 88(3): e0208921, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818107

ABSTRACT

Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly Bemisia tabaci MEAM1 hosts "Candidatus Portiera aleyrodidarum" (here, "Ca. Portiera") and "Candidatus Hamiltonella defensa" (here, "Ca. Hamiltonella") bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression, and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that "Ca. Portiera" and "Ca. Hamiltonella" evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. IMPORTANCE Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-"Ca. Portiera"/"Ca. Hamiltonella" endosymbiosis, we demonstrate autophagy regulates the symbiont titers and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, "Ca. Portiera" and "Ca. Hamiltonella" alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide a new avenue for whitefly control via regulating autophagy in the future.


Subject(s)
Halomonadaceae , Hemiptera , Vitamin B Complex , Animals , Autophagy , Halomonadaceae/genetics , Hemiptera/microbiology , Symbiosis/genetics , Vitamin B Complex/metabolism
16.
PLoS Pathog ; 17(11): e1010120, 2021 11.
Article in English | MEDLINE | ID: mdl-34843593

ABSTRACT

Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Halomonadaceae/physiology , Hemiptera/microbiology , Lysine/metabolism , Rickettsia/physiology , Symbiosis , Animals , Hemiptera/genetics , Hemiptera/growth & development , Lysine/genetics
17.
Acta Biochim Pol ; 68(4): 583-591, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34355554

ABSTRACT

PURPOSE: To develop and evaluate paclitaxel (PTX) loaded pegylated gelatin targeted nanoparticles for improved efficacy in non-small cell lung cancer (NSCLC) treatment. METHOD: PTX loaded gelatin nanoparticles (PTX-GNP) were prepared by crosslinking with glutaraldehyde aqueous solution. These nanoparticles (NPs) were further incubated with PEG 400 to form PEGylated NPs (PEG-PTX-GNP). The NPs were evaluated for surface morphology, size, zeta potential, encapsulation efficiency, drug loading, in vitro drug release, cytotoxicity in an assay on cancer cell lines L132, in vitro cellular uptake in an assay in L132 and 293T cell lines, in vivo antitumor activity on female Balb/c mice, pulmonary deposition, histopathology, and immunohistochemical properties. RESULTS: The nanoparticles were of spherical shape with smooth surface characteristics. The observed DL was of 20.18 to 32.11%, as particle size was of 90 to 115 nm. Zeta potential and polydispersity index (PDI) were within acceptable ranges. Encapsulation was effective when the NPs had a size of 80.50 nm to 98.12 nm. The PEGylated PTX loaded nanoparticles (PEG-PTX-GNP, GNP4) showed similar PTX release profile to that of the NP4 formulation. PEGylated NPs showed the desired PTX release pattern that is required for cancer treatment. In an in vitro cytotoxicity study, PEG-PTX-GNP showed the maximum antiproliferative activity over the period of 24 hours, followed by PTX-GNP, pure PTX and BPEG-GNP. PEG-PTX-GNP showed the highest internalization within both cell lines, followed by PTX-GNP and pure PTX. The survival rate of animals in PEG-PTX-GNP group was 100%, proving the safety and efficacy of the treatment. PEG-PTX-GNP showed the highest antitumor activity as compared to other formulations. The pulmonary deposition rate was the highest (6.5 to 12.55 µg/g) in PEG-PTX-GNP formulations. Histopathology and immunohistochemical study proved that PEG-PTX-GNP had greater anticancer potential than other tested formulations. CONCLUSION: This study confirms the potential use of paclitaxel loaded PEGylated gelatin targeted nanoparticles for improved efficacy in non-small cell lung cancer (NSCLC) treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Gelatin/chemistry , Lung Neoplasms/drug therapy , Nanoparticles/administration & dosage , Paclitaxel/administration & dosage , Polyethylene Glycols/chemistry , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/chemistry , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Paclitaxel/chemistry , Xenograft Model Antitumor Assays
18.
ISME J ; 15(6): 1655-1667, 2021 06.
Article in English | MEDLINE | ID: mdl-33432136

ABSTRACT

Intracellular symbionts in insects often have reduced genomes. Host acquisition of genes from bacteria is an important adaptation that supports symbionts. However, the function of horizontally transferred genes in insect symbiosis remains largely unclear. The primary symbiont Portiera housed in bacteriocytes lacks pantothenate synthesis genes: panB and panC, which is presumably complemented by a fused gene panB-panC (hereafter panBC) horizontally transferred from bacteria in Bemisia tabaci MEAM1. We found panBC in many laboratory cultures, and species of B. tabaci shares a common evolutionary origin. We demonstrated that complementation with whitefly panBC rescued E. coli pantothenate gene knockout mutants. Portiera elimination decreased the pantothenate level and PanBC abundance in bacteriocytes, and reduced whitefly survival and fecundity. Silencing PanBC decreased the Portiera titer, reduced the pantothenate level, and decreased whitefly survival and fecundity. Supplementation with pantothenate restored the symbiont titer, PanBC level, and fitness of RNAi whiteflies. These data suggest that pantothenate synthesis requires cooperation and coordination of whitefly PanBC expression and Portiera. This host-symbiont co-regulation was mediated by the pantothenate level. Our findings demonstrated that pantothenate production, by the cooperation of a horizontally acquired, fused bacteria gene and Portiera, facilitates the coordination of whitefly and symbiont fitness. Thus, this study extends our understanding on the basis of complex host-symbiont interactions.


Subject(s)
Hemiptera , Vitamin B Complex , Animals , Bacteria/genetics , Escherichia coli , Symbiosis
20.
ISME J ; 14(12): 2923-2935, 2020 12.
Article in English | MEDLINE | ID: mdl-32690936

ABSTRACT

Symbionts can regulate animal reproduction in multiple ways, but the underlying physiological and biochemical mechanisms remain largely unknown. The presence of multiple lineages of maternally inherited, intracellular symbionts (the primary and secondary symbionts) in terrestrial arthropods is widespread in nature. However, the biological, metabolic, and evolutionary role of co-resident secondary symbionts for hosts is poorly understood. The bacterial symbionts Hamiltonella and Arsenophonus have very high prevalence in two globally important pests, the whiteflies Bemisia tabaci and Trialeurodes vaporariorum, respectively. Both symbionts coexist with the primary symbiont Portiera in the same host cell (bacteriocyte) and are maternally transmitted. We found that elimination of both Hamiltonella and Arsenophonous by antibiotic treatment reduced the percentage of female offspring in whiteflies. Microsatellite genotyping and cytogenetic analysis revealed that symbiont deficiency inhibited fertilization in whiteflies, leading to more haploid males with one maternal allele, which is consistent with distorted sex ratio in whiteflies. Quantification of essential amino acids and B vitamins in whiteflies indicated that symbiont deficiency reduced B vitamin levels, and dietary B vitamin supplementation rescued fitness of whiteflies. This study, for the first time, conclusively demonstrates that these two intracellular symbionts affect sex ratios in their whitefly hosts by regulating fertilization and supplying B vitamins. Our results reveal that both symbionts have the convergent function of regulating reproduction in phylogenetically-distant whitefly species. The 100% frequency, the inability of whiteflies to develop normally without their symbiont, and rescue with B vitamins suggests that both symbionts may be better considered co-primary symbionts.


Subject(s)
Hemiptera , Vitamin B Complex , Animals , Female , Fertilization , Male , Sex Ratio , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...