Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(7): e0012368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39042701

ABSTRACT

Melioidosis caused by Burkholderia pseudomallei is an infectious disease with a high mortality rate. In acute melioidosis, sepsis is a major cause of death among patients. Once the bacterium enters the bloodstream, immune system dysregulation ensues, leading to cytokine storms. In contrast to B. pseudomallei, a closely related but non-virulent strain B. thailandensis has rarely been reported to cause cytokine storms or death in patients. However, the mechanisms in which the virulent B. pseudomallei causes sepsis are not fully elucidated. It is well-documented that monocytes play an essential role in cytokine production in the bloodstream. The present study, therefore, determined whether there is a difference in the innate immune response to B. pseudomallei and B. thailandensis during infection of primary human monocytes and THP-1 monocytic cells by investigating pyroptosis, an inflammatory death pathway known to play a pivotal role in sepsis. Our results showed that although both bacterial species exhibited a similar ability to invade human monocytes, only B. pseudomallei can significantly increase the release of cytosolic enzyme lactate dehydrogenase (LDH) as well as the increases in caspase-1 and gasdermin D activations in both cell types. The results were consistent with the significant increase in IL-1ß and IL-18 production, key cytokines involved in pyroptosis. Interestingly, there was no significant difference in other cytokine secretion, such as IL-1RA, IL-10, IL-12p70, IL-15, IL-8, and IL-23 in cells infected by both bacterial species. Furthermore, we also demonstrated that ROS production played a crucial role in controlling pyroptosis activation during B. pseudomallei infection in primary human monocytes. These findings suggested that pyroptosis induced by B. pseudomallei in the human monocytes may contribute to the pathogenesis of sepsis in acute melioidosis patients.


Subject(s)
Burkholderia pseudomallei , Burkholderia , Melioidosis , Monocytes , Pyroptosis , Sepsis , Humans , Burkholderia pseudomallei/immunology , Burkholderia pseudomallei/physiology , Monocytes/immunology , Monocytes/microbiology , Melioidosis/microbiology , Melioidosis/immunology , Burkholderia/pathogenicity , Sepsis/microbiology , Sepsis/immunology , Cytokines/metabolism , THP-1 Cells , Immunity, Innate , Cells, Cultured
2.
PLoS One ; 18(11): e0292340, 2023.
Article in English | MEDLINE | ID: mdl-38011122

ABSTRACT

BACKGROUND: Cleistanthin A (CA), extracted from Phyllanthus taxodiifolius Beille, was previously reported as a potential V-ATPase inhibitor relevant to cancer cell survival. In the present study, ECDD-S16, a derivative of cleistanthin A, was investigated and found to interfere with pyroptosis induction via V-ATPase inhibition. OBJECTIVE: This study examined the ability of ECDD-S16 to inhibit endolysosome acidification leading to the attenuation of pyroptosis in Raw264.7 macrophages activated by both surface and endosomal TLR ligands. METHODS: To elucidate the activity of ECDD-S16 on pyroptosis-induced inflammation, Raw264.7 cells were pretreated with the compound before stimulation with surface and endosomal TLR ligands. The release of lactate dehydrogenase (LDH) was determined by LDH assay. Additionally, the production of cytokines and the expression of pyroptosis markers were examined by ELISA and immunoblotting. Moreover, molecular docking was performed to demonstrate the binding of ECDD-S16 to the vacuolar (V-)ATPase. RESULTS: This study showed that ECDD-S16 could inhibit pyroptosis in Raw264.7 cells activated with surface and endosomal TLR ligands. The attenuation of pyroptosis by ECDD-S16 was due to the impairment of endosome acidification, which also led to decreased Reactive Oxygen Species (ROS) production. Furthermore, molecular docking also showed the possibility of inhibiting endosome acidification by the binding of ECDD-S16 to the vacuolar (V-)ATPase in the region of V0. CONCLUSION: Our findings indicate the potential of ECDD-S16 for inhibiting pyroptosis and prove that vacuolar H+ ATPase is essential for pyroptosis induced by TLR ligands.


Subject(s)
Vacuolar Proton-Translocating ATPases , Humans , Vacuolar Proton-Translocating ATPases/metabolism , Pyroptosis , Molecular Docking Simulation , Inflammation
3.
Article in English | MEDLINE | ID: mdl-37302095

ABSTRACT

BACKGROUND: Toll-like receptor 9 (TLR9), located in the endosomal compartment, is known to play a role in inflammation by recognizing oligonucleotides that contain CpG motive (CpG-ODN). Signaling by TLR9 leads to the production of proinflammatory cytokines and can trigger cell death. OBJECTIVE: This study aims to investigate the molecular mechanism of pyroptosis induced by ODN1826 in the mouse macrophage cell line (Raw264.7). METHODS: The protein expression and the amount of lactate dehydrogenase (LDH) of ODN1826-treated cells were determined by immunoblotting and LDH assay, respectively. In addition, the level of cytokine production was observed by ELISA assay and the ROS production was determined by flow cytometry. RESULTS: Our results showed that ODN1826 induced pyroptosis as judged by LDH releases. Furthermore, caspase-11 and gasdermin D activation, which are the key molecules in pyroptosis, were also observed in ODN1826-activated cells. Moreover, we also demonstrated that Reactive Oxygen Species (ROS) production by ODN1826 is essential for caspase-11 activation and gasdermin D release, which leads to pyroptosis. CONCLUSIONS: ODN1826 induces pyroptosis in Raw264.7 cells via caspase-11 and GSDMD activation. Moreover, the production of ROS by this ligand plays an essential role in the regulation of caspase-11 and GSDMD activation, which then controls pyroptosis in TLR9 activation.

4.
Microbiol Spectr ; 10(5): e0348822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36194127

ABSTRACT

Melioidosis is a serious infectious disease caused by Burkholderia pseudomallei. This bacterium is able to survive and multiply inside the immune cells such as macrophages. It is well established that Toll-like receptors (TLRs), particularly surface TLRs such as TLR2, TLR4, and TLR5, play an essential role in defending against this bacterial infection. However, the involvement of endosomal TLRs in the infection has not been elucidated. In this study, we demonstrated that the number of intracellular bacteria is reduced in TLR9-depleted RAW264.7 cells infected with B. pseudomallei, suggesting that TLR9 is involved in intracellular bacterial killing in macrophages. As several reports have previously demonstrated that pyroptosis is essential for restricting intracellular bacterial killing, particularly in B. pseudomallei infection, we also observed an increased release of cytosolic enzyme lactate dehydrogenase (LDH) in TLR9-depleted cells infected with B. pseudomallei, suggesting TLR9 involvement in pyroptosis in this context. Consistently, the increases in caspase-11 and gasdermind D (GSDMD) activations, which are responsible for the LDH release, were also detected. Moreover, we demonstrated that the increases in pyroptosis and bacterial killing in B. pseudomallei-infected TLR9-depleted cells were due to the augmentation of the IFN-ß, one of the key cytokines known to regulate caspase-11. Altogether, this finding showed that TLR9 suppresses macrophage killing of B. pseudomallei by regulating pyroptosis. This information provides a novel mechanism of TLR9 in the regulation of intracellular bacterial killing by macrophages, which could potentially be leveraged for therapeutic intervention. IMPORTANCE Surface TLRs have been well established to play an essential role in Burkholderia pseudomallei infection. However, the role of endosomal TLRs has not been elucidated. In the present study, we demonstrated that TLR9 plays a crucial role by negatively regulating cytokine production, particularly IFN-ß, a vital cytokine to control pyroptosis via caspase-11 activation. By depletion of TLR9, the percentage of pyroptosis was significantly increased, leading to suppression of intracellular survival in B. pseudomallei-infected macrophages. These findings provide a new role of TLR9 in macrophages.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Mice , Animals , Burkholderia pseudomallei/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 2/metabolism , Pyroptosis , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 5/metabolism , Melioidosis/metabolism , Melioidosis/microbiology , Macrophages , Cell Line , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Cytokines/metabolism , Caspases/metabolism , Lactate Dehydrogenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL