Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 183: 109594, 2023 06.
Article in English | MEDLINE | ID: mdl-36870610

ABSTRACT

PURPOSE: In this study we describe the clinical introduction and evaluation of radiotherapy in mediastinal lymphoma in breath hold using surface monitoring combined with nasal high flow therapy (NHFT) to prolong breath hold duration. MATERIALS AND METHODS: 11 Patients with mediastinal lymphoma were evaluated. 6 Patients received NHFT, 5 patients were treated in breath hold without NHFT. Breath hold stability as measured by a surface scanning system was evaluated, as well as internal movement based on cone beam computed tomography (CBCT) before and after treatment. Based on internal movement, margins were determined. In a parallel planning study we compared free breathing plans with breath hold plans using the determined margins. RESULTS: Average inter breath hold stability was 0.6 mm for NHFT treatments, and 0.5 mm for non-NHFT treatments (p > 0.1). Intra breath hold stability was 0.8 vs. 0.6 mm (p > 0.1) on average. Using NHFT, average breath hold duration increased from 34 s to 60 s (p < 0.01). Residual CTV motion derived from CBCTs before and after each fraction was 2.0 mm for NHFT vs 2.2 mm for non-NHFT (p > 0.1). Combined with inter-fraction motion, a uniform mediastinal margin of 5 mm appears to be sufficient. In breath hold, mean lung dose is reduced by 2.6 Gy (p < 0.001), while mean heart dose is reduced by 2.0 Gy (p < 0.001). CONCLUSION: Treatment of mediastinal lymphoma in breath hold is feasible and safe. The addition of NHFT approximately increases breath hold durations with a factor two while stability is maintained. By reducing breathing motion, margins can be decreased to 5 mm. A considerable dose reduction in heart, lungs, esophagus, and breasts can be achieved with this method.


Subject(s)
Lymphoma , Mediastinal Neoplasms , Humans , Breath Holding , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Lung , Mediastinal Neoplasms/diagnostic imaging , Mediastinal Neoplasms/radiotherapy , Radiotherapy Dosage , Lymphoma/diagnostic imaging , Lymphoma/radiotherapy
2.
Phys Imaging Radiat Oncol ; 22: 104-110, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35602549

ABSTRACT

Background and purpose: User-adjustments after deep-learning (DL) contouring in radiotherapy were evaluated to get insight in real-world editing during clinical practice. This study assessed the amount, type and spatial regions of editing of auto-contouring for organs-at-risk (OARs) in routine clinical workflow for patients in the thorax region. Materials and methods: A total of 350 lung cancer and 362 breast cancer patients, contoured between March 2020 and March 2021 using a commercial DL-contouring method followed by manual adjustments were retrospectively analyzed. Subsampling was performed for some OARs, using an inter-slice gap of 1-3 slices. Commonly-used whole-organ contouring assessment measures were calculated, and all cases were registered to a common reference shape per OAR to identify regions of manual adjustment. Results were expressed as the median, 10th-90th percentile of adjustment and visualized using 3D renderings. Results: Per OAR, the median amount of editing was below 1 mm. However, large adjustments were found in some locations for most OARs. In general, enlarging of the auto-contours was needed. Subsampling DL-contours showed less adjustments were made in the interpolated slices compared to simulated no-subsampling for these OARs. Conclusion: The real-world performance of automatic DL-contouring software was evaluated and proven useful in clinical practice. Specific regions-of-adjustment were identified per OAR in the thorax region, and separate models were found to be necessary for specific clinical indications different from training data. This analysis showed the need to perform routine clinical analysis especially when procedures or acquisition protocols change to have the best configuration of the workflow.

3.
Phys Imaging Radiat Oncol ; 16: 74-80, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33458347

ABSTRACT

BACKGROUND AND PURPOSE: Radiotherapy centers frequently lack simple tools for periodic treatment plan verification and feedback on current plan quality. It is difficult to measure treatment quality over different years or during the planning process. Here, we implemented plan quality assurance (QA) by developing a database of dose-volume histogram (DVH) metrics and a prediction model. These tools were used to assess automatically optimized treatment plans for rectal cancer patients, based on cohort analysis. MATERIAL AND METHODS: A treatment plan QA framework was established and an overlap volume histogram based model was used to predict DVH parameters for cohorts of patients treated in 2018 and 2019 and grouped according to planning technique. A training cohort of 22 re-optimized treatment plans was used to make the prediction model. The prediction model was validated on 95 automatically generated treatment plans (automatically optimized cohort) and 93 manually optimized plans (manually optimized cohort). RESULTS: For the manually optimized cohort, on average the prediction deviated less than 0.3 ± 1.4 Gy and -4.3 ± 5.5 Gy, for the mean doses to the bowel bag and bladder, respectively; for the automatically optimized cohort a smaller deviation was observed: -0.1 ± 1.1 Gy and -0.2 ± 2.5 Gy, respectively. The interquartile range of DVH parameters was on average smaller for the automatically optimized cohort, indicating less variation within each parameter compared to manual planning. CONCLUSION: An automated framework to monitor treatment quality with a DVH prediction model was successfully implemented clinically and revealed less variation in DVH parameters for automated in comparison to manually optimized plans. The framework also allowed for individual feedback and DVH estimation.

SELECTION OF CITATIONS
SEARCH DETAIL
...