Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; : e5164, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664924

ABSTRACT

Ultrasound speckle tracking is frequently used to quantify myocardial strain, and magnetic resonance imaging (MRI) feature tracking is rapidly gaining interest. Our aim is to validate cardiac MRI feature tracking by comparing it with the gold standard method (i.e., MRI tagging) in healthy subjects and patients. Furthermore, we aim to perform an indirect validation by comparing ultrasound speckle tracking with MRI feature tracking. Forty-two subjects (17 formerly preeclamptic women, three healthy women, and 22 left bundle branch block patients of both sexes) received 3-T cardiac MRI and echocardiography. Cine and tagged MRI, and B-mode ultrasound images, were acquired. Intrapatient global and segmental left ventricular circumferential (MRI tagging vs. MRI feature tracking) and longitudinal (MRI feature tracking vs. ultrasound speckle tracking) peak strain and time to peak strain were compared between the three techniques. Intraclass correlation coefficient (ICC) (< 0.50 = poor, 0.50-0.75 = moderate, > 0.75-0.90 = good, > 0.90 = excellent) and Bland-Altman analysis were used to assess correlation and bias; p less than 0.05 indicates a significant ICC or bias. Global peak strain parameters showed moderate-to-good correlations between methods (ICC = 0.71-0.83, p < 0.01) with no significant biases. Global time to peak strain parameters showed moderate-to-good correlations (ICC = 0.56-0.82, p < 0.01) with no significant biases. Segmental peak strains showed significant biases in all parameters and moderate-to-good correlation (ICC = 0.62-0.77, p < 0.01), except for lateral longitudinal peak strain (ICC = 0.23, p = 0.22). Segmental time to peak strain parameters showed moderate-to-good correlation (ICC = 0.58-0.74, p < 0.01) with no significant biases. MRI feature tracking is a valid method to examine myocardial strain, but there is bias in absolute segmental strain values between imaging techniques. MRI feature tracking shows adequate comparability with ultrasound speckle tracking.

2.
Eur Heart J Digit Health ; 3(3): 473-480, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36712168

ABSTRACT

Aims: Smartphones are equipped with a high-quality microphone which may be used as an electronic stethoscope. We aim to investigate the factors influencing quality of heart sound recorded using a smartphone by non-medical users. Methods and results: An app named Echoes was developed for recording heart sounds using iPhone. Information on phone version and users' characteristics including sex, age, and body mass index (BMI) was collected. Heart sound quality was visually assessed and its relation to phone version and users' characteristics was analysed. A total of 1148 users contributed to 7597 heart sound recordings. Over 80% of users were able to make at least one good-quality recording. Good-, unsure- and bad-quality recordings amounted to 5647 (74.6%), 466 (6.2%) and 1457 (19.2%), respectively. Most good recordings were collected in the first three attempts of the users. Phone version did not significantly change the users' success rate of making a good recording, neither was sex in the first attempt (P = 0.41) or the first three attempts (P = 0.21). Success rate tended to decrease with age in the first attempt (P = 0.06) but not the first three attempts (P = 0.70). BMI did not significantly affect the heart sound quality in a single attempt (P = 0.73) or in three attempts (P = 0.14). Conclusion: Smartphone can be used by non-medical users to record heart sounds in good quality. Age may affect heart sound recording, but hardware, sex, and BMI do not alter the recording.

3.
Europace ; 23(23 Suppl 1): i63-i70, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33751078

ABSTRACT

AIMS: Electric conduction in the atria is direction-dependent, being faster in fibre direction, and possibly heterogeneous due to structural remodelling. Intracardiac recordings of atrial activation may convey such information, but only with high-quality data. The aim of this study was to apply a patient-specific approach to enable such assessment even when data are scarce, noisy, and incomplete. METHODS AND RESULTS: Contact intracardiac recordings in the left atrium from nine patients who underwent ablation therapy were collected before pulmonary veins isolation and retrospectively included in the study. The Personalized Inverse Eikonal Model from cardiac Electro-Anatomical Maps (PIEMAP), previously developed, has been used to reconstruct the conductivity tensor from sparse recordings of the activation. Regional fibre direction and conduction velocity were estimated from the fitted conductivity tensor and extensively cross-validated by clustered and sparse data removal. Electrical conductivity was successfully reconstructed in all patients. Cross-validation with respect to the measurements was excellent in seven patients (Pearson correlation r > 0.93) and modest in two patients (r = 0.62 and r = 0.74). Bland-Altman analysis showed a neglectable bias with respect to the measurements and the limit-of-agreement at -22.2 and 23.0 ms. Conduction velocity in the fibre direction was 82 ± 25 cm/s, whereas cross-fibre velocity was 46 ± 7 cm/s. Anisotropic ratio was 1.91±0.16. No significant inter-patient variability was observed. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps correctly predicted activation times in late regions in all patients (r = 0.88) and was robust to a sparser dataset (r = 0.95). CONCLUSION: Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps offers a novel approach to extrapolate the activation in unmapped regions and to assess conduction properties of the atria. It could be seamlessly integrated into existing electro-anatomic mapping systems. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps also enables personalization of cardiac electrophysiology models.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Heart Atria/surgery , Humans , Pulmonary Veins/surgery , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...