Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630142

ABSTRACT

By combining capacitance-voltage measurements, TCAD simulations, and X-ray photoelectron spectroscopy, the impact of the work function of the gate metals Ti, Mo, Pd, and Ni on the defects in bulk HfO2 and at the HfO2/InGaAs interfaces are studied. The oxidation at Ti/HfO2 is found to create the highest density of interface and border traps, while a stable interface at the Mo/HfO2 interface leads to the smallest density of traps in our sample. The extracted values of Dit of 1.27 × 1011 eV-1cm-2 for acceptor-like traps and 3.81 × 1011 eV-1cm-2 for donor-like traps are the lowest reported to date. The density and lifetimes of border traps in HfO2 are examined using the Heiman function and strongly affect the hysteresis of capacitance-voltage curves. The results help systematically guide the choice of gate metal for InGaAs.

2.
Sci Rep ; 11(1): 4981, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33654153

ABSTRACT

A new method has been established and employed to create a random nanophotonic crystal (NPhC) structure without photolithography on the unpolished side of a single-side-polished sapphire substrate. This nano structure has potential use in enhancing the light-extraction efficiency (LEE) of deep ultraviolet light-emitting diodes (DUV-LEDs), and has never been built for DUV-LED applications before. Two mask layers in the nano scale (Au and SiO2) were used to create the NPhC and observed using scanning electron microscopy to have an average height of 400 nm and various sizes from 10 to 200 nm. Finally, a conventional DUV-LED and a DUV-LED device with NPhC were simulated using 2D Lumerical Finite-Difference Time-Domain (FDTD) for comparison. The results show that the LEE of the DUV-LED device with this NPhC integrated was significantly directly enhanced by up to 46% and 90% for TE and TM modes, respectively, compared to the conventional DUV-LED device. Thus, this NPhC is believed to be a new, key technique to enhance the LEE of DUV-LEDs.

SELECTION OF CITATIONS
SEARCH DETAIL