Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288729

ABSTRACT

Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire's mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.


Subject(s)
DNA, Ancient , Genome, Human , Humans , Europe , France , Genetics, Population , Population Dynamics , Human Migration
2.
Nat Ecol Evol ; 7(9): 1515-1524, 2023 09.
Article in English | MEDLINE | ID: mdl-37592021

ABSTRACT

The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.


Subject(s)
DNA, Ancient , Human Migration , Mediterranean Region , Archaeology , Human Migration/history , Humans , Principal Component Analysis , Human Genetics , DNA, Ancient/analysis , Sequence Analysis, DNA , Burial , Anthropology , History, Ancient
3.
Genome Res ; 31(3): 472-483, 2021 03.
Article in English | MEDLINE | ID: mdl-33579752

ABSTRACT

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Subject(s)
DNA, Ancient/isolation & purification , Dental Cementum/chemistry , Tooth/chemistry , Humans , Male , Tooth/anatomy & histology
4.
Nature ; 590(7844): 103-110, 2021 02.
Article in English | MEDLINE | ID: mdl-33361817

ABSTRACT

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Subject(s)
Archaeology , Genetics, Population , Genome, Human/genetics , Human Migration/history , Islands , Population Dynamics/history , Archaeology/ethics , Caribbean Region , Central America/ethnology , Ceramics/history , Genetics, Population/ethics , Geographic Mapping , Haplotypes , History, Ancient , Humans , Male , Population Density , South America/ethnology
5.
PLoS One ; 15(12): e0229370, 2020.
Article in English | MEDLINE | ID: mdl-33326416

ABSTRACT

The present study applies a dental morphological perspective to the understanding of the complex pre-contact population history of the South Central Andes, through the detection of the underlying dynamics, and the assessment of the biological ties among groups. It presents an analysis of 1591 individuals from 66 sites that date from the Archaic to the Late Intermediate phases from Bolivia, Chile and Peru. The results suggest this area is characterized by significant movement of people and cultures and, at the same time, by long standing population continuity, and highlight the need for wider perspectives capable of taking into account both the different micro-regional realities and the region in its entirety.


Subject(s)
Human Migration/history , Population Dynamics/history , Archaeology , Bolivia , Chile , Female , Fossils , History, Ancient , Humans , Indians, South American , Male , Peru , Tooth
7.
Nat Ecol Evol ; 4(3): 334-345, 2020 03.
Article in English | MEDLINE | ID: mdl-32094539

ABSTRACT

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.


Subject(s)
Agriculture , DNA, Ancient , Genome-Wide Association Study , Africa , Anthropology , Emigration and Immigration , Europe , Humans , Iran , Islands , Sicily , Spain
8.
Science ; 366(6466): 708-714, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31699931

ABSTRACT

Ancient Rome was the capital of an empire of ~70 million inhabitants, but little is known about the genetics of ancient Romans. Here we present 127 genomes from 29 archaeological sites in and around Rome, spanning the past 12,000 years. We observe two major prehistoric ancestry transitions: one with the introduction of farming and another prior to the Iron Age. By the founding of Rome, the genetic composition of the region approximated that of modern Mediterranean populations. During the Imperial period, Rome's population received net immigration from the Near East, followed by an increase in genetic contributions from Europe. These ancestry shifts mirrored the geopolitical affiliations of Rome and were accompanied by marked interindividual diversity, reflecting gene flow from across the Mediterranean, Europe, and North Africa.


Subject(s)
Emigration and Immigration/history , Gene Flow , Africa, Northern/ethnology , Genome, Human , History, Ancient , Humans , Mediterranean Region , Middle East/ethnology , Rome
SELECTION OF CITATIONS
SEARCH DETAIL
...