Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136234

ABSTRACT

Broccoli by-products are an important source of health-promoting bioactive compounds, although they are generally underutilized. This study aimed to valorize non-compliant broccoli florets by transforming them into functional ingredients for biscuit formulation. A broccoli flour and three water/ethanol extracts (100:0, 75:25, 50:50; v/v) were obtained. The rheological properties and the content of bioactive compounds of the functional ingredients and biscuits were evaluated. The 50:50 hydroalcoholic extract was the richest in glucosinolates (9749 µg·g-1 DW); however, the addition of a small amount strongly affected dough workability. The enrichment with 10% broccoli flour resulted the best formulation in terms of workability and color compared to the other enriched biscuits. The food matrix also contributed to protecting bioactive compounds from thermal degradation, leading to the highest total glucosinolate (33 µg·g-1 DW), carotenoid (46 µg·g-1 DW), and phenol (1.9 mg GAE·g-1 DW) contents being present in the final biscuit. Therefore, broccoli flour is a promising ingredient for innovative healthy bakery goods. Hydroalcoholic extracts could be valuable ingredients for liquid or semi-solid food formulation.

2.
Food Res Int ; 173(Pt 1): 113239, 2023 11.
Article in English | MEDLINE | ID: mdl-37803552

ABSTRACT

The possibility to steer extra virgin olive oil (EVOO) digestion and polyphenol bioaccessibility through oleogelation was investigated. EVOO was converted into oleogels using lipophilic (monoglycerides, rice wax, sunflower wax, phytosterols) or hydrophilic (whey protein aerogel particles, WP) gelators. In-vitro digestion demonstrated that the oleogelator nature influenced both lipid digestion and polyphenol bioaccessibility. WP-based oleogels presented ∼100% free fatty acid release compared to ∼64% for unstructured EVOO and ∼40 to ∼55% for lipophilic-based oleogels. This behavior was attributed to the ability of WP to promote micelle formation through oleogel destructuring. Contrarily, the lower lipolysis of EVOO gelled with lipophilic gelators compared to unstructured EVOO suggested that the gelator obstructed lipase accessibility. Tyrosol and hydroxytyrosol bioaccessibility increased for WP oleogels (∼27%), while liposoluble-based oleogels reduced it by 7 to 13%. These findings highlight the deep effect of the gelator choice on the digestion fate of EVOO components in the human body.


Subject(s)
Organic Chemicals , Polyphenols , Humans , Olive Oil/metabolism , Digestion
3.
Molecules ; 28(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298869

ABSTRACT

The potential of endogenous n-alkane profiling for the assessment of extra virgin olive oils (EVOO) adulteration (blends with cheaper vegetable oils) has been studied by relatively few authors. Analytical methods used for this purpose often involve tedious and solvent-intensive sample preparation prior to analytical determination, making them unattractive. A rapid and solvent-sparing offline solid phase extraction (SPE) gas chromatography (GC) flame ionization detection (FID) method for the determination of endogenous n-alkanes in vegetable oils was, therefore, optimized and validated. The optimized method demonstrated good performance characteristics in terms of linearity (R2 > 0.999), recovery (on average 94%), and repeatability (residual standard deviation, RSD < 11.9%). The results were comparable to those obtained with online high-performance liquid chromatography (HPLC)-GC- FID ( RSD < 5.1%). As an example of an application to prove the potentiality of endogenous n-alkanes in revealing frauds, the data set obtained from 16 EVOO, 9 avocado oils (AVO), and 13 sunflower oils (SFO), purchased from the market, was subjected to statistical analysis and principal component analysis. Two powerful indices, namely (n-C29 + n-C31)/(n-C25 + n-C26) and n-C29/n-C25, were found to reveal the addition of 2% SFO in EVOO and 5% AVO in EVOO, respectively. Further studies are needed to confirm the validity of these promising indices.


Subject(s)
Alkanes , Plant Oils , Olive Oil/chemistry , Plant Oils/chemistry , Flame Ionization/methods , Chromatography, Gas/methods , Sunflower Oil , Solvents/analysis , Solid Phase Extraction/methods
4.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37372042

ABSTRACT

The beneficial effects of sardine consumption can be related to the presence of bioactive compounds, such as vitamin E and ω3 polyunsaturated fatty acids. In any case, the levels of these compounds in sardine fillet depend on different factors mainly related to the diet and reproductive cycle phase of the fish as well as the technological treatments carried out to cook the fillets. The aim of the present study is two-fold: first, to evaluate changes in the total fatty acid profile, lipid oxidation, and vitamin E content of raw fillets from sardine (Sardina pilchardus) at different reproductive cycle phases (pre-spawning, spawning, and post-spawning); and second, to highlight how these nutritional profiles are affected by three oven treatments (conventional, steam, and sous-vide). For this purpose, raw fish was grouped into pre-spawning, spawning, and post-spawning phases according to the mesenteric fat frequency and the gonadosomatic index evaluation, and submitted to conventional (CO), steam (SO), and sous-vide (SV) baking. The ratio of EPA/DHA and vitamin E increased from post-spawning to pre-spawning, to spawning. Considering the reproductive phases, baking affected the oxidative degree differently: a CO > SO ≥ SV impact was found in the worst scenario (post-spawning), mitigated by vitamin E, to CO ≥ SO > SV in the best scenario (spawning). SV was the best treatment with high values of vitamin E in pre-spawning individuals (110.1 mg/kg). This study shows how vitamin E is correlated to the combined effect of endogenous and exogenous factors.

5.
Food Chem ; 412: 135572, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36724719

ABSTRACT

The role of polyphenols in affecting the structural and rheological properties of oleogels was investigated. Polyphenols were selectively removed from extra virgin olive oil (EVOO), and the resulting oils at three different polyphenol levels were gelled by using 10% (w/w) of monoglycerides (MG), rice wax (RW), sunflower wax (SW), and a mixture of ß-sitosterol/γ-oryzanol (PS). The structural characteristics of oleogels were assessed by visual appearance, rheology, polarized light microscopy, calorimetry, XRD, and FTIR. Polyphenol content differently affected oleogel characteristics depending on network features. While EVOO-polyphenols did not influence PS- and SW-based oleogels, they reinforced MG- and RW-based oleogel network. As polyphenol content increased, the critical stress and melting temperature also increased, concomitantly with changes in crystal morphology. This was attributed to the capacity of polyphenols to form additional junction points in the crystalline network.


Subject(s)
Asteraceae , Helianthus , Oryza , Polyphenols , Olive Oil , Calorimetry , Monoglycerides
6.
MethodsX ; 10: 101972, 2023.
Article in English | MEDLINE | ID: mdl-36593759

ABSTRACT

During the course of the EU H2020 OLEUM project, a harmonized method was developed to quantify volatile markers of the aroma of virgin olive oil with the aim to support the work of sensory panel test to assess the quality grade. A peer validation of this method has been carried out, with good results in terms of analytical quality parameters. The method allows the quantification of volatile compounds by SPME-GC with two possible detectors, flame ionization detector and mass spectrometry, depending on the technical facilities of the labs applying this method. The method was optimized for the quantification of 18 volatile compounds that were selected as being markers responsible for positive attributes (e.g. fruity) and sensory defects (e.g. rancid and winey-vinegary). The quantification is carried out with calibration curves corrected by the internal standards. Additionally, a protocol is provided to prepare the calibration samples. This procedure enhances reproducibility between labs since one of the main sources of errors is the application of different procedures in calibration.

7.
Curr Res Food Sci ; 6: 100437, 2023.
Article in English | MEDLINE | ID: mdl-36691589

ABSTRACT

Industrial cauliflower by-products still represent a no-value food waste, even though they are rich in bioactive compounds. With the aim of valorizing them, optimized special flours rich in glucobrassicin, lutein, ß-carotene, and ß-sitosterol obtained from leaves, orange and violet stalks were used at 10 and 30% w/w in the formulation of functional leavened bakery. For the first time, the effect of bioactive compounds enrichment in pizza products as well as the rheological properties were evaluated. As results, pizza making process affected the recovery of the bioactive compounds. The recovery of glucobrassicin and carotenoids in pizza depended on the aerial part of cauliflower. Pizza with violet stalks was the richest in glucobrassicin, providing 8.4 mg per portion (200 g). Pizza with leaves showed the highest carotenoid content with a 90% of recovery rate while pizza with orange stalks provided up to 5.8% of the phytosterols health claim requirement. All 10% enriched pizzas revealed viscoelastic and springiness properties similar to the control, contrary to 30% fortification level. Therefore, the use of 10% special flour in pizza should meet both technological industrial processing and consumer acceptance. Orange stalks are the most promising ingredients for high levels of fortification in pizzas.

8.
Foods ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231645

ABSTRACT

The authenticity of coffee beans was addressed in this study using an analytical method with minimal sample preparation to achieve simple oil extraction and through the implementation of cost-effective equipment. For this purpose, methods using UHPLC with CAD and FLD detectors were applied to detect triglycerides and tocopherols in coffee, respectively. The coffee samples included two main varieties: Arabica from Brazil, Colombia, Ethiopia, and Uganda, as well as the Robusta variety from Cambodia, Guatemala, India, and Vietnam. The samples were either in their green state or subjected to different roasting levels. The used methods successfully distinguished the Arabica and Robusta variants targeted in this study based on their tocopherols and TAG profiles, with the latter being particularly effective for discriminating the origins of the Arabica coffee, while tocopherols excelled at differentiating the origin of the Robusta coffee. TAGs and tocopherols were not affected by the type of roasting, from medium to very dark, suggesting it is possible to distinguish between coffee varieties independently from their degree of roasting. The obtained results hold valuable implications for future research regarding coffee fraud and authenticity.

9.
Foods ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230116

ABSTRACT

The impact of mild oven treatments (steaming or sous-vide) and boiling for 10 min, 25 min, or 40 min on health-promoting phytochemicals in orange and violet cauliflower (Brassica oleracea L. var. botrytis) was investigated. For this purpose, targeted ultra-high performance liquid chromatography-high-resolution mass spectrometry analysis of phenolics and glycosylates, combined with chemometrics, was employed. Regardless of cooking time, clear differentiation of cooked samples obtained using different procedures was achieved, thus demonstrating the distinct impact of cooking approaches on sample phytochemical profile (both, compound distribution and content). The main responsible components for the observed discrimination were derivatives of hydroxycinnamic acid and kaempferol, organic acids, indolic, and aromatic glucosinolates, with glucosativin that was found, for the first time, as a discriminant chemical descriptor in colored cauliflower submitted to steaming and sous-vide. The obtained findings also highlighted a strict relationship between the impact of the cooking technique used and the type of cauliflower. The boiling process significantly affected the phytochemicals in violet cauliflower whereas orange cauliflower boiled samples were grouped between raw and either steamed or sous-vide-cooked samples. Finally, the results confirm that the proposed methodology is capable of discriminating cauliflower samples based on their phytochemical profiles and identifying the cooking procedure able to preserve bioactive constituents.

10.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35204095

ABSTRACT

The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (ß-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and ß-carotene) and of phylloquinone was comparable. The lutein and ß-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.

11.
Food Chem ; 368: 130779, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34411852

ABSTRACT

Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), γ-oryzanol, and ß-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 °C. All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel. Structuring triggered a depletion in phenolic content and α-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG ~ RW < PS < EC). However, during storage phenolics and α-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.


Subject(s)
Phenols , alpha-Tocopherol , Monoglycerides , Olive Oil , Phenols/analysis
12.
Foods ; 10(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199349

ABSTRACT

Minor compounds in vegetable oils are distributed between free and esterified forms, and the ratio of these two fractions could represent an important parameter for assessment of oil authenticity. A simple method based on offline SPE-GC-FID for the analysis of free and esterified hydroxylated minor compounds in olive and sunflower oils has been developed and in-house validated. A satisfactory repeatability relative standard deviation (<7.5%) was obtained in all cases. The method, which requires simple instrumentation, allows for reliable quantification in a single chromatographic run with the advantages of minimizing sample manipulation, use of toxic solvents and reagents, and time consumption. The analytical procedure was applied to pure oil samples, including 15 authentic extra virgin olive oils collected from different European countries (Spain, Italy, Greece, and Portugal). Finally, the proposed SPE-GC-FID methodology could detect changes in the ratio between the free and esterified forms in pure extra virgin olive oil when mixed with refined sunflower oil at different percentages of 2, 5, 10, 15, and 20% (w/w) to simulate adulteration.

13.
Antioxidants (Basel) ; 10(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572861

ABSTRACT

The effect of steam and sous-vide oven procedures on liposoluble antioxidants of colored cauliflower (orange and purple) was assessed for the first time and compared with domestic practice (boiling). In raw samples, the total carotenoid content was 10-fold higher in Cheddar than in Depurple (20.9 ± 2.1 vs. 2.3 ± 0.5 mg/kg dry weight), whereas the level of tocopherols was similar (28.5 ± 4.4 vs. 33 ± 5.2 mg/kg dry weight). The Cheddar liposoluble antioxidant matter contained violaxanthin, neoxanthin, α-carotene and δ-tocopherol, not detected in Depurple. All tests increased the bioactive compounds extractability with steam oven and sous-vide displaying similar effects, lower than boiling. In boiled Cheddar cauliflower, the total carotenoids and tocopherols contents increased with cooking time until they were 13-fold and 6-fold more than in raw cauliflower, respectively. Conversely, in the Depurple variety, contents increased by half with respect to the orange variety. However, from a nutritional point of view, no differences were revealed among the three different cooking treatments in terms of vitamin A and E levels expressed in µg/100 g of fresh vegetable because of the higher water content of boiled samples that must be considered when evaluating the effect of thermal treatment on cauliflower nutritional traits.

14.
J AOAC Int ; 104(2): 267-273, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33398342

ABSTRACT

BACKGROUND: Fish products can be contaminated with mineral oil hydrocarbons (MOH), mainly as a result of environmental contamination (wild fish) or contaminated feeds (farmed fish). Packaged products may also be contaminated with polyolefin oligomeric hydrocarbons (POH), which, depending on the packaging, storage condition, matrix composition, and fat content, may migrate relatively easily from the packaging to the food. OBJECTIVE: A rapid, solvent-sparing method for determining hydrocarbon contaminants in fish products was developed, validated, and applied to farmed and wild fish products (both fresh and packaged samples, stored under different conditions). METHOD: Microwave-assisted saponification (MAS) was used in combination with on-line LC-GC-flame ionization detection (FID). RESULTS: The proposed method showed quantitative recovery, good repeatability, and high sensitivity. Farmed salmon had variable mineral oil saturated hydrocarbon contamination (from 0.5 to 4.3 mg/kg), accompanied by mineral oil aromatic hydrocarbons (maximum 1.4 mg/kg), while wild salmons had no detectable contamination. Samples of one farmed salmon and a swordfish, both sliced and packed under vacuum, resulted contaminated with POH migrated from the packaging. POH migration was also evident in a ready-to-eat meal. CONCLUSIONS: The proposed method showed good performance characteristics in terms of recovery, repeatability, and LOQ. Fatty fish products are more prone to contamination with hydrocarbon contaminants. HIGHLIGHTS: MAS allows for rapid and efficient sample preparation. An LC-GC-FID method for MOH/POH determination in fish products was validated. Fish products may be contaminated with variable amounts of hydrocarbon contaminants.


Subject(s)
Food Contamination , Mineral Oil , Animals , Fish Products , Flame Ionization , Food Contamination/analysis , Hydrocarbons/analysis , Mineral Oil/analysis
15.
Foods ; 9(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114601

ABSTRACT

Vegetable oils contain endogenous linear hydrocarbons, namely n-alkanes, ranging from n-C21 to n-C35, with odd chain lengths prevalent. Different vegetable oils, as well as oils of the same type, but of different variety and provenience, show typical n-alkane patterns, which could be used as a fingerprint to characterize them. In the first part of this review, data on the occurrence of n-alkanes in different vegetable oils (total and predominant n-alkanes) are given, with a focus on obtaining information regarding variety and geographical origin. The second part aims to provide the state of the art on available analytical methods for their determination. In particular, a detailed description of the sample preparation protocols and analytical determination is reported, pointing out the main drawbacks of traditional sample preparation and possible solutions to implement the analysis with the aim to shift toward rapid and solvent-sparing methods.

16.
Foods ; 9(10)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050606

ABSTRACT

A method based on the selective extraction of zearalenone (ZON) from edible vegetable oils using molecularly imprinted polymer (MIP) has been developed and validated. Ultra-high-pressure liquid chromatography coupled with a fluorescence detection system was employed for the detection of zearalenone. The method was applied to the analysis of zearalenone in maize oil samples spiked at four concentration levels within the maximum permitted amount specified by the European Commission Regulation (EC) No. 1126/2007. As a result, the proposed methodology provided high recoveries (>72%) with good linearity (R2 > 0.999) in the range of 10-2000 µg/kg and a repeatability relative standard deviation below 1.8%. These findings meet the analytical performance criteria specified by the European Commission Regulation No. 401/2006 and reveal that the proposed methodology can be successfully applied for monitoring zearalenone at trace levels in different edible vegetable oils. A comparison of MIP behavior with the ones of QuEChERS and liquid-liquid extraction was also performed, showing higher extraction rates and precision of MIP. Finally, the evolution of ZON contamination during the maize oil refining process was also investigated, demonstrating how the process is unable to completely remove (60%) ZON from oil samples.

17.
Foods ; 9(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992980

ABSTRACT

Polyolefin oligomeric hydrocarbons (POH) are non-intentionally added substances (NIAS) which mainly reside in the polymer (PE, PP) as a consequence of the polymerization process, and that under favorable conditions (high fat content, high temperature, and long contact time) may migrate at high amount from the packaging into the food. The food industry offers a wide range of ready-to-eat products, among these, vegetable soups designed to be stored at refrigeration temperature (for times around 6 weeks), and in most cases to be heated for a few minutes in a microwave oven (into the original container, mostly of PP) before consumption. The present work aimed to study for the first-time migration of POH during the shelf life of these products, including storage at refrigeration temperature and after microwave heating. On-line high-performance liquid chromatography (HPLC)-gas chromatography (GC), followed by flame ionization detection (FID), was applied for POH analysis in a number of ready-to-eat products purchased from the Italian market. Microwave heating determined a variable POH increase ranging from 0.1 to 6.2 mg/kg. Parameters possibly affecting migration such as fat content and heating time were also studied.

18.
Foods ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932895

ABSTRACT

Food products are very complex mixtures consisting of naturally-occurring compounds and other substances, generally originating from technological processes, agrochemical treatments, or packaging materials [...].

19.
Foods ; 9(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150867

ABSTRACT

The impact of the olive oil refining process on major antioxidant compound levels was evaluated by means of UHPLC analysis of lampante olive oils collected at different stages of the refining procedure (degumming, chemical and physical flash neutralization, bleaching, and deodorization). For this purpose, the evolution of the tocopherol fraction was investigated by means of the UHPLC-FL method, while the influence of the refining process on the total hydrolyzed phenolic content was assessed by measuring hydroxytyrosol and tyrosol levels after acid hydrolysis of the phenolic extracts. Refining was found to have a marked effect on total hydroxytyrosol and tyrosol contents, as they are completely removed in the early steps of the refining procedure. In contrast, the variation trends of tocopherols are not always clear-cut, and significant decreases in content from 7% to 16% were only revealed during refining in four out of nine samples. In addition, five of the nine refined oils showed final tocopherol concentrations higher than 200 mg/kg, the limit imposed by international standards regarding the content of such compounds in commercial olive oils. This study supports the need for a revision of the International Olive Oil Council (IOC) standard relative to the limit established for tocopherol addition to refined oils to avoid possible legal and economic trade issues.

20.
Foods ; 9(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150931

ABSTRACT

Producers have to guarantee the extra virgin olive oil (EVOO) quality characteristics reported in the Regulation (CEE) 2568/91 throughout the product shelf-life (SL). Unfortunately, due to the development of oxidative reactions, some quality indices change during storage leading to a progressive deterioration of EVOO quality. To avoid the risk of product downgrading in the virgin oil category, the development of effective shelf-life prediction models is extremely important for the olive oil industry. In this research, the accelerated shelf-life testing (ASLT) protocol was applied to evaluate the temperature dependence of selected oxidation indexes as well as to develop a shelf-life predictive model. The evolution of conventional (peroxide value, K232, K270, polyphenols, tocopherols and hexanal) and unconventional parameters (conjugated trienes and pyropheophytin a) was monitored in bottled EVOO stored in the dark at increasing temperature (25, 40, 50 and 60 °C). Accordingly, for well-packed products with reduced oxygen in headspace, the best shelf-life index allowing the ability to predict EVOO SL turned out to be K270. In addition, pyropheophytin a (%) has been shown to be more sensitive to temperature changes than the secondary oxidation indices, thus suggesting its use as a freshness indicator for storage temperatures higher than 25 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...