Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37327313

ABSTRACT

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Subject(s)
Ferroptosis , Phosphatidylethanolamine Binding Protein , Glutathione/metabolism , Iron/metabolism , Lipid Peroxidation , Lipids , Oxidation-Reduction , Phosphatidylethanolamine Binding Protein/antagonists & inhibitors
2.
Sci Transl Med ; 10(428)2018 02 14.
Article in English | MEDLINE | ID: mdl-29444979

ABSTRACT

Cancer cells adapt to their inherently increased oxidative stress through activation of the glutathione (GSH) and thioredoxin (TXN) systems. Inhibition of both of these systems effectively kills cancer cells, but such broad inhibition of antioxidant activity also kills normal cells, which is highly unwanted in a clinical setting. We therefore evaluated targeting of the TXN pathway alone and, more specifically, selective inhibition of the cytosolic selenocysteine-containing enzyme TXN reductase 1 (TXNRD1). TXNRD1 inhibitors were discovered in a large screening effort and displayed increased specificity compared to pan-TXNRD inhibitors, such as auranofin, that also inhibit the mitochondrial enzyme TXNRD2 and additional targets. For our lead compounds, TXNRD1 inhibition correlated with cancer cell cytotoxicity, and inhibitor-triggered conversion of TXNRD1 from an antioxidant to a pro-oxidant enzyme correlated with corresponding increases in cellular production of H2O2 In mice, the most specific TXNRD1 inhibitor, here described as TXNRD1 inhibitor 1 (TRi-1), impaired growth and viability of human tumor xenografts and syngeneic mouse tumors while having little mitochondrial toxicity and being better tolerated than auranofin. These results display the therapeutic anticancer potential of irreversibly targeting cytosolic TXNRD1 using small molecules and present potent and selective TXNRD1 inhibitors. Given the pronounced up-regulation of TXNRD1 in several metastatic malignancies, it seems worthwhile to further explore the potential benefit of specific irreversible TXNRD1 inhibitors for anticancer therapy.


Subject(s)
Cytosol/enzymology , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Thioredoxin Reductase 1/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Hydrogen Peroxide/metabolism , Male , Mice, SCID , Oxidation-Reduction , Structure-Activity Relationship , Thioredoxin Reductase 1/chemistry , Thioredoxin Reductase 1/metabolism , Xenograft Model Antitumor Assays
3.
J Med Chem ; 60(22): 9184-9204, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29120638

ABSTRACT

We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazoles/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , High-Throughput Screening Assays , Humans , Male , Membranes, Artificial , Mice , Microsomes, Liver/drug effects , Permeability , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacokinetics
4.
Arterioscler Thromb Vasc Biol ; 37(10): 1828-1839, 2017 10.
Article in English | MEDLINE | ID: mdl-28775075

ABSTRACT

OBJECTIVE: Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Here, we studied the effect of the first highly selective 12-LOX inhibitor, ML355, on in vivo thrombosis and hemostasis. APPROACH AND RESULTS: ML355 dose-dependently inhibited human platelet aggregation and 12-LOX oxylipin production, as confirmed by mass spectrometry. Interestingly, the antiplatelet effects of ML355 were reversed after exposure to high concentrations of thrombin in vitro. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen were attenuated in whole blood treated with ML355 comparable to aspirin. Oral administration of ML355 in mice showed reasonable plasma drug levels by pharmacokinetic assessment. ML355 treatment impaired thrombus growth and vessel occlusion in FeCl3-induced mesenteric and laser-induced cremaster arteriole thrombosis models in mice. Importantly, hemostatic plug formation and bleeding after treatment with ML355 was minimal in mice in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. CONCLUSIONS: Our data strongly support 12-LOX as a key determinant of platelet reactivity in vivo, and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapy.


Subject(s)
Hemostasis/drug effects , Lipoxygenase Inhibitors/pharmacology , Platelet Aggregation/drug effects , Sulfonamides/pharmacology , Thrombosis/prevention & control , Animals , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/administration & dosage , Lipoxygenase Inhibitors/blood , Mice , Platelet Adhesiveness/drug effects , Sulfonamides/administration & dosage , Sulfonamides/blood , Thrombin/physiology
5.
J Clin Endocrinol Metab ; 102(8): 2789-2797, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28609824

ABSTRACT

Context: The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). Objectives: We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. Design: Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1ß, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. Setting: In vitro study. Participants: Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. Intervention: Glucose stimulation. Main Outcome Measures: Static and dynamic insulin secretion and oxygen consumption rate (OCR). Results: ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. Conclusions: ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/pharmacology , Insulin/metabolism , Islets of Langerhans/drug effects , Lipoxygenase Inhibitors/pharmacology , Oxygen Consumption/drug effects , Sulfonamides/pharmacology , Adult , Case-Control Studies , Female , Humans , In Vitro Techniques , Inflammation , Insulin Secretion , Interferon-gamma/pharmacology , Interleukin-1beta/pharmacology , Male , Middle Aged , Tumor Necrosis Factor-alpha/pharmacology , Young Adult
7.
PLoS One ; 11(8): e0161486, 2016.
Article in English | MEDLINE | ID: mdl-27570969

ABSTRACT

The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.


Subject(s)
Alkanes/chemistry , Alkanes/pharmacology , Endoplasmic Reticulum Stress/drug effects , Glioma/metabolism , Animals , Apoptosis/drug effects , Biological Assay/methods , Blotting, Western , Calcium/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , HT29 Cells , Heat-Shock Proteins/metabolism , Humans , Signal Transduction/drug effects
8.
J Med Chem ; 57(19): 8099-110, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25229643

ABSTRACT

Deregulation of ubiquitin conjugation or deconjugation has been implicated in the pathogenesis of many human diseases including cancer. The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1), in association with UAF1 (USP1-associated factor 1), is a known regulator of DNA damage response and has been shown as a promising anticancer target. To further evaluate USP1/UAF1 as a therapeutic target, we conducted a quantitative high throughput screen of >400000 compounds and subsequent medicinal chemistry optimization of small molecules that inhibit the deubiquitinating activity of USP1/UAF1. Ultimately, these efforts led to the identification of ML323 (70) and related N-benzyl-2-phenylpyrimidin-4-amine derivatives, which possess nanomolar USP1/UAF1 inhibitory potency. Moreover, we demonstrate a strong correlation between compound IC50 values for USP1/UAF1 inhibition and activity in nonsmall cell lung cancer cells, specifically increased monoubiquitinated PCNA (Ub-PCNA) levels and decreased cell survival. Our results establish the druggability of the USP1/UAF1 deubiquitinase complex and its potential as a molecular target for anticancer therapies.


Subject(s)
Antineoplastic Agents/chemical synthesis , Arabidopsis Proteins/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Pyrimidines/chemical synthesis , Ubiquitin-Specific Proteases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Proliferating Cell Nuclear Antigen/metabolism , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitination
9.
Blood ; 124(14): 2271-9, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25100742

ABSTRACT

Platelets are essential in maintaining hemostasis following inflammation or injury to the vasculature. Dysregulated platelet activity often results in thrombotic complications leading to myocardial infarction and stroke. Activation of the FcγRIIa receptor leads to immune-mediated thrombosis, which is often life threatening in patients undergoing heparin-induced thrombocytopenia or sepsis. Inhibiting FcγRIIa-mediated activation in platelets has been shown to limit thrombosis and is the principal target for prevention of immune-mediated platelet activation. In this study, we show for the first time that platelet 12(S)-lipoxygenase (12-LOX), a highly expressed oxylipin-producing enzyme in the human platelet, is an essential component of FcγRIIa-mediated thrombosis. Pharmacologic inhibition of 12-LOX in human platelets resulted in significant attenuation of FcγRIIa-mediated aggregation. Platelet 12-LOX was shown to be essential for FcγRIIa-induced phospholipase Cγ2 activity leading to activation of calcium mobilization, Rap1 and protein kinase C activation, and subsequent activation of the integrin αIIbß3. Additionally, platelets from transgenic mice expressing human FcγRIIa but deficient in platelet 12-LOX, failed to form normal platelet aggregates and exhibited deficiencies in Rap1 and αIIbß3 activation. These results support an essential role for 12-LOX in regulating FcγRIIa-mediated platelet function and identifies 12-LOX as a potential therapeutic target to limit immune-mediated thrombosis.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Blood Platelets/metabolism , Receptors, IgG/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry , Animals , Calcium/metabolism , Enzyme Activation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phospholipase C gamma/metabolism , Phosphorylation , Platelet Activation , Platelet Aggregation , Protein Kinase C/metabolism , Signal Transduction , Thrombosis/immunology
10.
Nat Chem Biol ; 10(4): 298-304, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24531842

ABSTRACT

Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Arabidopsis Proteins/antagonists & inhibitors , DNA Damage/physiology , Nuclear Proteins/antagonists & inhibitors , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitination/drug effects , Algorithms , Butyrates/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Colony-Forming Units Assay , DNA Damage/genetics , DNA, Neoplasm/antagonists & inhibitors , DNA, Neoplasm/biosynthesis , Drug Resistance, Neoplasm , Electrophoresis, Polyacrylamide Gel , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group D2 Protein/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Indicators and Reagents , Phenylurea Compounds/pharmacology , Pimozide/pharmacology , Proliferating Cell Nuclear Antigen/drug effects , Proliferating Cell Nuclear Antigen/metabolism , RNA, Small Interfering/genetics , Recombinant Proteins/chemistry , Recombination, Genetic/drug effects , Sister Chromatid Exchange/drug effects
11.
J Med Chem ; 57(2): 495-506, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24393039

ABSTRACT

Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in ß-cells.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Benzene Derivatives/chemical synthesis , Lipoxygenase Inhibitors/chemical synthesis , Sulfonamides/chemical synthesis , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Biological Availability , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcium/metabolism , Humans , Islets of Langerhans/drug effects , Islets of Langerhans/enzymology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Mice , Platelet Aggregation/drug effects , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
12.
Nat Commun ; 4: 2261, 2013.
Article in English | MEDLINE | ID: mdl-23907321

ABSTRACT

Plasmodium falciparum resistance to artemisinin derivatives, the first-line antimalarial drug, drives the search for new classes of chemotherapeutic agents. Current discovery is primarily directed against the intracellular forms of the parasite. However, late schizont-infected red blood cells (RBCs) may still rupture and cause disease by sequestration; consequently targeting invasion may reduce disease severity. Merozoite invasion of RBCs requires interaction between two parasite proteins AMA1 and RON2. Here we identify the first inhibitor of this interaction that also blocks merozoite invasion in genetically distinct parasites by screening a library of over 21,000 compounds. We demonstrate that this inhibition is mediated by the small molecule binding to AMA1 and blocking the formation of AMA1-RON complex. Electron microscopy confirms that the inhibitor prevents junction formation, a critical step in invasion that results from AMA1-RON2 binding. This study uncovers a strategy that will allow for highly effective combination therapies alongside existing antimalarial drugs.


Subject(s)
Erythrocytes/parasitology , Malaria/parasitology , Parasites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Small Molecule Libraries/pharmacology , Animals , Antimalarials/analysis , Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins/pharmacology , Erythrocytes/drug effects , Erythrocytes/ultrastructure , Humans , Inhibitory Concentration 50 , Merozoites/drug effects , Merozoites/ultrastructure , Parasites/drug effects , Plasmodium falciparum/drug effects , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
13.
Bioorg Med Chem Lett ; 22(16): 5326-9, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22795331

ABSTRACT

Inhibitors of ketohexokinase (KHK) have potential for the treatment of diabetes and obesity. We have continued studies on a pyrimidinopyrimidine series of potent KHK inhibitors by exploring the 2-position substituent (R(3)) that interacts with Asp-27B in the ATP-binding region of KHK (viz. 1, 2; Table 1). We found that increased spacing between the terminal ammonium group and the heterocyclic scaffold (viz. 16-20), such that interaction with Asp-27B is not possible, still results in potent KHK inhibition (IC(50)=15-50 nM). We propose a new interaction with Asp-194, which serves to expand the pyrimidinopyrimidine pharmacophore.


Subject(s)
Enzyme Inhibitors/chemistry , Fructokinases/antagonists & inhibitors , Ligands , Pyrimidines/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Fructokinases/metabolism , Hep G2 Cells , Humans , Protein Binding , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/metabolism
14.
ACS Med Chem Lett ; 2(7): 538-43, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-24900346

ABSTRACT

Attenuation of fructose metabolism by the inhibition of ketohexokinase (KHK; fructokinase) should reduce body weight, free fatty acids, and triglycerides, thereby offering a novel approach to treat diabetes and obesity in response to modern diets. We have identified potent, selective inhibitors of human hepatic KHK within a series of pyrimidinopyrimidines (1). For example, 8, 38, and 47 exhibited KHK IC50 values of 12, 7, and 8 nM, respectively, and also showed potent cellular KHK inhibition (IC50 < 500 nM), which relates to their intrinsic potency vs KHK and their ability to penetrate cells. X-ray cocrystal structures of KHK complexes of 3, 8, and 47 revealed the important interactions within the enzyme's adenosine 5'-triphosphate (ATP)-binding pocket.

15.
J Med Chem ; 52(23): 7432-45, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19731961

ABSTRACT

We have discovered two related chemical series of nonpeptide urotensin-II (U-II) receptor antagonists based on piperazino-phthalimide (5 and 6) and piperazino-isoindolinone (7) scaffolds. These structure types are distinctive from those of U-II receptor antagonist series reported in the literature. Antagonist 7a exhibited single-digit nanomolar potency in rat and human cell-based functional assays, as well as strong binding to the human U-II receptor. In advanced pharmacological testing, 7a blocked the effects of U-II in vitro in a rat aortic ring assay and in vivo in a rat ear-flush model. A discussion of U-II receptor antagonist pharmacophores is presented, and a specifically defined model is suggested from tricycle 13, which has a high degree of conformational constraint.


Subject(s)
Isoindoles/chemistry , Isoindoles/pharmacology , Phthalimides/chemistry , Phthalimides/pharmacology , Piperazines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Aorta/drug effects , Aorta/physiology , CHO Cells , Cricetinae , Cricetulus , High-Throughput Screening Assays , Humans , Isoindoles/chemical synthesis , Male , Phthalimides/chemical synthesis , Piperazine , Rats , Rats, Wistar
16.
Bioorg Med Chem Lett ; 17(23): 6489-92, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17933531

ABSTRACT

Various 4-phenylpiperidine-benzoxazin-3-ones were synthesized and biologically evaluated as urotensin-II (U-II) receptor antagonists. Compound 12i was identified from in vitro evaluation as a low nanomolar antagonist against both rat and human U-II receptors. This compound showed in vivo efficacy in reversing the ear-flush response induced by U-II in rats.


Subject(s)
Benzoxazines/chemical synthesis , Piperidines/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Urotensins/metabolism , Animals , Benzoxazines/pharmacology , CHO Cells , Cricetinae , Cricetulus , Humans , Piperidines/pharmacology , Rats , Receptors, G-Protein-Coupled/physiology , Structure-Activity Relationship , Urotensins/antagonists & inhibitors , Urotensins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...