Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(2): 112110, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36790927

ABSTRACT

HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.


Subject(s)
HIV-1 , HIV-1/genetics , HIV-1/metabolism , Microglia/metabolism , CCCTC-Binding Factor/metabolism , Chromatin , Genomics , Virus Integration/genetics
2.
mBio ; 13(2): e0370521, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35229634

ABSTRACT

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cobicistat , Cricetinae , Disease Progression , Humans , Mesocricetus , Pandemics , SARS-CoV-2 , Viral Load
4.
EMBO Mol Med ; 13(8): e13901, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34289240

ABSTRACT

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Down-Regulation , Glycolysis , Humans , Oxidative Stress , Proteomics , Virus Activation , Virus Latency
5.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: mdl-33904396

ABSTRACT

HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm. Nuclear cDNA initially co-localized with a fluorescent integrase fusion (IN-FP) and the viral CA (capsid) protein, but cDNA-punctae separated from IN-FP/CA over time. This phenotype was conserved in primary HIV-1 target cells, with nuclear HIV-1 complexes exhibiting strong CA-signals in all cell types. CLEM revealed cone-shaped HIV-1 capsid-like structures and apparently broken capsid-remnants at the position of IN-FP signals and elongated chromatin-like structures in the position of viral cDNA punctae lacking IN-FP. Our data argue for nuclear uncoating by physical disruption rather than cooperative disassembly of the CA-lattice, followed by physical separation from the pre-integration complex.


When viruses infect human cells, they hijack the cell's machinery to produce the proteins they need to replicate. Retroviruses like HIV-1 do this by entering the nucleus and inserting their genetic information into the genome of the infected cell. This requires HIV-1 to convert its genetic material into DNA, which is then released from the protective shell surrounding it (known as the capsid) via a process called uncoating. The nucleus is enclosed within an envelope containing pores that molecules up to a certain size can pass through. Until recently these pores were thought to be smaller than the viral capsid, which led scientists to believe that the HIV-1 genome must shed this coat before penetrating the nucleus. However, recent studies have found evidence for HIV-1 capsid proteins and capsid structures inside the nucleus of some infected cells. This suggests that the capsid may not be removed before nuclear entry or that it may even play a role in helping the virus get inside the nucleus. To investigate this further, Müller et al. attached fluorescent labels to the newly made DNA of HIV-1 and some viral and cellular proteins. Powerful microscopy tools were then used to monitor the uncoating process in various cells that had been infected with the virus. Müller et al. found large amounts of capsid protein inside the nuclei of all the infected cells studied. During the earlier stages of infection, the capsid proteins were mostly associated with viral DNA and the capsid structure appeared largely intact. At later time points, the capsid structure had been broken down and the viral DNA molecules were gradually separating themselves from these remnants. These findings suggest that the HIV-1 capsid helps the virus get inside the nucleus and may protect its genetic material during conversion into DNA until right before integration into the cell's genome. Further experiments studying this process could lead to new therapeutic approaches that target the capsid as a way to prevent or treat HIV-1.


Subject(s)
Cell Nucleus/virology , DNA Replication , DNA, Viral/biosynthesis , HIV Infections/virology , HIV-1/growth & development , Virus Internalization , Virus Replication , Virus Uncoating , CD4-Positive T-Lymphocytes/ultrastructure , CD4-Positive T-Lymphocytes/virology , Capsid Proteins/metabolism , Cell Nucleus/ultrastructure , DNA, Viral/genetics , DNA, Viral/ultrastructure , HEK293 Cells , HIV Infections/pathology , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , HIV-1/genetics , HIV-1/ultrastructure , HeLa Cells , Host-Pathogen Interactions , Humans , Macrophages/ultrastructure , Macrophages/virology , Microscopy, Electron , Microscopy, Fluorescence , Time Factors
6.
Article in English | MEDLINE | ID: mdl-33753405

ABSTRACT

Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome. Interactions with host DNA, transcription factors or nuclear bodies mediate their replication. Often interfering with nuclear functions, viruses use nuclear architecture to ensure persistent infections. Discovering these multiple modes of replication and persistence served in unraveling many important nuclear processes, such as nuclear trafficking, transcription, and splicing. Here, by using examples of DNA and RNA viral families, we portray the nucleus with the virus inside.


Subject(s)
Cell Nucleus/virology , DNA Viruses/physiology , RNA Viruses/physiology , Virus Integration , Animals , Cell Nucleus/physiology , Gene Expression Regulation, Viral , Humans
7.
Methods Mol Biol ; 2157: 239-249, 2021.
Article in English | MEDLINE | ID: mdl-32820408

ABSTRACT

Fluorescence in situ hybridization (FISH) is a powerful, broadly used microscopy-based technique that leverages fluorescently labeled nucleic acid probes to detect parts of the genome inside metaphase or interphase cell nuclei. In recent years, different methodologies developed to visualize genome topology and spatial relationships between genes have gained much attention as instruments to decode the relationship between chromatin structure and function. In addition to chromosome conformation capture-based techniques, highly multiplexed forms of FISH combined with high-throughput and super-resolution microscopy are used to map and spatially define contact frequencies between different genomic regions. All these approaches have strongly contributed to our knowledge of how the human genome is packed in the cell nucleus.In this chapter, we describe detailed step-by-step protocols for 3D immuno-DNA FISH detection of genes and Human immunodeficiency virus 1 (HIV-1) provirus in primary CD4+ T cells from healthy donors, or cells infected in vitro with the virus. Our multicolor 3D-FISH technique allows, by using up to three fluorophores, visualization of spatial positioning of loci inside a 3D cell nucleus.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cell Nucleus/metabolism , HIV-1/isolation & purification , In Situ Hybridization, Fluorescence/methods , CD4-Positive T-Lymphocytes/virology , Chromosomes, Human/metabolism , Humans
8.
Bioessays ; 43(3): e2000257, 2021 03.
Article in English | MEDLINE | ID: mdl-33377226

ABSTRACT

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic spread presents challenges that demand immediate attention. Here, we describe the development of a semi-quantitative high-content microscopy-based assay for detection of three major classes (IgG, IgA, and IgM) of SARS-CoV-2 specific antibodies in human samples. The possibility to detect antibodies against the entire viral proteome together with a robust semi-automated image analysis workflow resulted in specific, sensitive and unbiased assay that complements the portfolio of SARS-CoV-2 serological assays. Sensitive, specific and quantitative serological assays are urgently needed for a better understanding of humoral immune response against the virus as a basis for developing public health strategies to control viral spread. The procedure described here has been used for clinical studies and provides a general framework for the application of quantitative high-throughput microscopy to rapidly develop serological assays for emerging virus infections.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoassay , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Microscopy/methods , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/methods , Fluorescent Antibody Technique , High-Throughput Screening Assays , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Immune Sera/chemistry , Machine Learning , Sensitivity and Specificity
9.
Viruses ; 12(6)2020 05 27.
Article in English | MEDLINE | ID: mdl-32471302

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has reached over five million confirmed cases worldwide, and numbers are still growing at a fast rate. Despite the wide outbreak of the infection, a remarkable asymmetry is observed in the number of cases and in the distribution of the severity of the COVID-19 symptoms in patients with respect to the countries/regions. In the early stages of a new pathogen outbreak, it is critical to understand the dynamics of the infection transmission, in order to follow contagion over time and project the epidemiological situation in the near future. While it is possible to reason that observed variation in the number and severity of cases stems from the initial number of infected individuals, the difference in the testing policies and social aspects of community transmissions, the factors that could explain high discrepancy in areas with a similar level of healthcare still remain unknown. Here, we introduce a binary classifier based on an artificial neural network that can help in explaining those differences and that can be used to support the design of containment policies. We found that SARS-CoV-2 infection frequency positively correlates with particulate air pollutants, and specifically with particulate matter 2.5 (PM2.5), while ozone gas is oppositely related with the number of infected individuals. We propose that atmospheric air pollutants could thus serve as surrogate markers to complement the infection outbreak anticipation.


Subject(s)
Atmosphere/analysis , Coronavirus Infections/epidemiology , Disease Outbreaks , Ozone , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Humans , Italy/epidemiology , Models, Theoretical , Ozone/analysis , Pandemics , Particulate Matter/adverse effects , SARS-CoV-2
10.
EMBO J ; 39(9): e102209, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32157726

ABSTRACT

HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4+ T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin-proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment.


Subject(s)
Gene Regulatory Networks , HIV Infections/virology , HIV-1/physiology , Iron/metabolism , Promyelocytic Leukemia Protein/metabolism , Animals , Cell Line , Disease Models, Animal , HIV Infections/genetics , HIV Infections/metabolism , Humans , Macaca , Oxidation-Reduction , Proteolysis , Sequence Analysis, RNA , Sumoylation , Up-Regulation , Virus Latency
11.
Nat Commun ; 10(1): 4059, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492853

ABSTRACT

HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cell Nucleus/genetics , Enhancer Elements, Genetic , HIV-1/genetics , Virus Integration/genetics , Base Sequence , CD4-Positive T-Lymphocytes/virology , Cell Nucleus/metabolism , Cell Nucleus/virology , Chromatin/genetics , Chromatin/virology , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Humans , Nuclear Pore/genetics , Nuclear Pore/virology , Promoter Regions, Genetic/genetics , Transcription, Genetic
12.
Elife ; 82019 01 23.
Article in English | MEDLINE | ID: mdl-30672737

ABSTRACT

Nuclear entry of HIV-1 replication complexes through intact nuclear pore complexes is critical for successful infection. The host protein cleavage-and-polyadenylation-specificity-factor-6 (CPSF6) has been implicated in different stages of early HIV-1 replication. Applying quantitative microscopy of HIV-1 reverse-transcription and pre-integration-complexes (RTC/PIC), we show that CPSF6 is strongly recruited to nuclear replication complexes but absent from cytoplasmic RTC/PIC in primary human macrophages. Depletion of CPSF6 or lack of CPSF6 binding led to accumulation of HIV-1 subviral complexes at the nuclear envelope of macrophages and reduced infectivity. Two-color stimulated-emission-depletion microscopy indicated that under these circumstances HIV-1 complexes are retained inside the nuclear pore and undergo CA-multimer dependent CPSF6 clustering adjacent to the nuclear basket. We propose that nuclear entry of HIV-1 subviral complexes in macrophages is mediated by consecutive binding of Nup153 and CPSF6 to the hexameric CA lattice.


Subject(s)
Capsid/metabolism , Cell Nucleus/metabolism , HIV-1/metabolism , Macrophages/metabolism , Macrophages/virology , Nuclear Pore Complex Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Active Transport, Cell Nucleus/drug effects , Capsid/drug effects , Cell Nucleus/drug effects , HIV-1/drug effects , HIV-1/pathogenicity , HeLa Cells , Humans , Indoles/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Macrophages/drug effects , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects
13.
Tumour Biol ; 37(10): 13391-13401, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27460089

ABSTRACT

The age-specific differences in the genetic mechanisms of myeloid leukemogenesis have been observed and studied previously. However, NGS technology has provided a possibility to obtain a large amount of mutation data. We analyzed DNA samples from 20 childhood (cAML) and 20 adult AML (aAML) patients, using NGS targeted sequencing. The average coverage of high-quality sequences was 2981 × per amplicon. A total of 412 (207 cAML, 205 aAML) variants in the coding regions were detected; out of which, only 122 (62 cAML and 60 aAML) were potentially protein-changing. Our results confirmed that AML contains small number of genetic alterations (median 3 mutations/patient in both groups). The prevalence of the most frequent single gene AML associated mutations differed in cAML and aAML patient cohorts: IDH1 (0 % cAML, 5 % aAML), IDH2 (0 % cAML, 10 % aAML), NPM1 (10 % cAML, 35 % aAML). Additionally, potentially protein-changing variants were found in tyrosine kinase genes or genes encoding tyrosine kinase associated proteins (JAK3, ABL1, GNAQ, and EGFR) in cAML, while among aAML, the prevalence is directed towards variants in the methylation and histone modifying genes (IDH1, IDH2, and SMARCB1). Besides uniform genomic profile of AML, specific genetic characteristic was exclusively detected in cAML and aAML.


Subject(s)
Biomarkers, Tumor/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Transcriptome , Adult , Child , Computational Biology , Female , Humans , Leukemia, Myeloid, Acute/classification , Male , Nucleophosmin , Polymerase Chain Reaction , Prognosis
14.
FEBS Lett ; 590(13): 1927-39, 2016 07.
Article in English | MEDLINE | ID: mdl-27224516

ABSTRACT

Thanks to the current combined antiretroviral therapy (cART), HIV-1 infection has become a manageable although chronic disease. The reason for this lies in the fact that long-lived cellular reservoirs persist in patients on cART. Despite numerous efforts to understand molecular mechanisms that contribute to viral latency, the important question of how and when latency is established remains unanswered. Related to this is the connection between HIV-1 integration and the capacity of the provirus to enter the latent state. In this review, we will give an overview of these nuclear events in the viral life cycle in the light of current therapeutic approaches, which aim to either reactivate the provirus or even excise the proviral DNA from the cellular genome.


Subject(s)
HIV Infections/therapy , HIV-1/genetics , HIV-1/physiology , Transcription, Genetic , Virus Integration/physiology , Animals , Chromatin/metabolism , Disease Reservoirs/virology , Humans
15.
Int J Mol Sci ; 17(5)2016 May 06.
Article in English | MEDLINE | ID: mdl-27164089

ABSTRACT

The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach.


Subject(s)
Central Nervous System Neoplasms/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Oncogene Proteins/genetics
16.
Nature ; 521(7551): 227-31, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25731161

ABSTRACT

Long-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosome Positioning/genetics , Genetic Loci/genetics , HIV-1/genetics , HIV-1/physiology , Virus Integration/genetics , Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , HIV Integrase/metabolism , Half-Life , Humans , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation/genetics
17.
Cell Host Microbe ; 13(6): 665-77, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23768491

ABSTRACT

Nuclear bodies (NBs), characterized by the presence of the promyelocytic leukemia (PML) protein, are important components of the nuclear architecture, contributing to genetic and epigenetic control of gene expression. In investigating the mechanisms mediating HIV-1 latency, we determined that silenced but transcriptionally competent HIV-1 proviruses reside in close proximity to PML NBs and that this association inhibits HIV-1 gene expression. PML binds to the latent HIV-1 promoter, which coincides with transcriptionally inactive facultative heterochromatic marks, notably H3K9me2, at the viral genome. PML degradation and NB disruption result in strong activation of viral transcription as well as release of G9a, the major methyltransferase responsible for H3K9me2, and loss of facultative heterochromatin marks from the proviral DNA. Additionally, HIV-1 transcriptional activation requires proviral displacement from PML NBs by active nuclear actin polymerization. Thus, nuclear topology and active gene movement mediate HIV-1 transcriptional regulation and have implications for controlling HIV-1 latency and eradication.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Expression Regulation, Viral , HIV-1/physiology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Virus Latency , Cells, Cultured , DNA, Viral/metabolism , Histones/metabolism , Humans , Promoter Regions, Genetic , Promyelocytic Leukemia Protein , Protein Binding , Proviruses/physiology
18.
Nat Struct Mol Biol ; 20(3): 347-54, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23396353

ABSTRACT

Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.


Subject(s)
DNA Replication , RecQ Helicases/metabolism , Topoisomerase I Inhibitors/pharmacology , Camptothecin/pharmacology , Cell Line , DNA Topoisomerases, Type I/metabolism , Humans , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , RecQ Helicases/genetics
19.
Nucleic Acids Res ; 39(5): 1703-17, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21059676

ABSTRACT

RecQ helicases have attracted considerable interest in recent years due to their role in the suppression of genome instability and human diseases. These atypical helicases exert their function by resolving a number of highly specific DNA structures. The crystal structure of a truncated catalytic core of the human RECQ1 helicase (RECQ1(49-616)) shows a prominent ß-hairpin, with an aromatic residue (Y564) at the tip, located in the C-terminal winged-helix domain. Here, we show that the ß-hairpin is required for the DNA unwinding and Holliday junction (HJ) resolution activity of full-length RECQ1, confirming that it represents an important determinant for the distinct substrate specificity of the five human RecQ helicases. In addition, we found that the ß-hairpin is required for dimer formation in RECQ1(49-616) and tetramer formation in full-length RECQ1. We confirmed the presence of stable RECQ1(49-616) dimers in solution and demonstrated that dimer formation favours DNA unwinding; even though RECQ1 monomers are still active. Tetramers are instead necessary for more specialized activities such as HJ resolution and strand annealing. Interestingly, two independent protein-protein contacts are required for tetramer formation, one involves the ß-hairpin and the other the N-terminus of RECQ1, suggesting a non-hierarchical mechanism of tetramer assembly.


Subject(s)
DNA/metabolism , RecQ Helicases/chemistry , DNA, Cruciform , Dimerization , Humans , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , RecQ Helicases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...