Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Article in English | MEDLINE | ID: mdl-39091597

ABSTRACT

PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.

2.
Article in English | MEDLINE | ID: mdl-39002850

ABSTRACT

PURPOSE: Minibeam radiation therapy (MBRT) is characterized by the delivery of submillimeter-wide regions of high "peak" and low "valley" doses throughout a tumor. Preclinical studies have long shown the promise of this technique, and we report here the first clinical implementation of MBRT. METHODS AND MATERIALS: A clinical orthovoltage unit was commissioned for MBRT patient treatments using 3-, 4-, 5-, 8-, and 10-cm diameter cones. The 180 kVp output was spatially separated into minibeams using a tungsten collimator with 0.5 mm wide slits spaced 1.1 mm on center. Percentage depth dose (PDD) measurements were obtained using film dosimetry and plastic water for both peak and valley doses. PDDs were measured on the central axis for offsets of 0, 0.5, and 1 cm. The peak-to-valley ratio was calculated at each depth for all cones and offsets. To mitigate the effects of patient motion on delivered dose, patient-specific 3-dimensional-printed collimator holders were created. These conformed to the unique anatomy of each patient and affixed the tungsten collimator directly to the body. Two patients were treated with MBRT; both received 2 fractions. RESULTS: Peak PDDs decreased gradually with depth. Valley PDDs initially increased slightly with depth, then decreased gradually beyond 2 cm. The peak-to-valley ratios were highest at the surface for smaller cone sizes and offsets. In vivo film dosimetry confirmed a distinct delineation of peak and valley doses in both patients treated with MBRT with no dose blurring. Both patients experienced prompt improvement in symptoms and tumor response. CONCLUSIONS: We report commissioning results, treatment processes, and the first 2 patients treated with MBRT using a clinical orthovoltage unit. While demonstrating the feasibility of this approach is a crucial first step toward wider translation, clinical trials are needed to further establish safety and efficacy.

3.
J Thromb Haemost ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925490

ABSTRACT

BACKGROUND: Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer. Many in-house and commercially available assays have been developed to measure EV-TF activity and antigen, but only a few studies have compared some of these assays. OBJECTIVES: The International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Subcommittee on Vascular Biology initiated a multicenter study to compare the sensitivity, specificity, and reproducibility of these assays. METHODS: Platelet-depleted plasma samples were prepared from blood of healthy donors. The plasma samples were spiked either with EVs from human milk or EVs from TF-positive and TF-negative cell lines. Plasma was also prepared from whole human blood with or without lipopolysaccharide stimulation. Twenty-one laboratories measured EV-TF activity and antigen in the prepared samples using their own assays representing 18 functional and 9 antigenic assays. RESULTS: There was a large variability in the absolute values for the different EV-TF activity and antigen assays. Activity assays had higher specificity and sensitivity compared with antigen assays. In addition, there was a large intra-assay and interassay variability. Functional assays that used a blocking anti-TF antibody or immunocapture were the most specific and sensitive. Activity assays that used immunocapture had a lower coefficient of variation compared with assays that isolated EVs by high-speed centrifugation. CONCLUSION: Based on this multicenter study, we recommend measuring EV-TF using a functional assay in the presence of an anti-TF antibody.

4.
Sci Adv ; 10(26): eadn5228, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941469

ABSTRACT

Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.


Subject(s)
Extracellular Vesicles , Glycolysis , Hepatic Stellate Cells , Liver Cirrhosis , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Extracellular Vesicles/metabolism , Mice , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Disease Models, Animal , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Male
5.
Cancers (Basel) ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38473407

ABSTRACT

Upamostat is an orally available small-molecule serine protease inhibitor that is a highly potent inhibitor of trypsin 1, trypsin 2, trypsin 3 (PRSS1/2/3), and the urokinase-type plasminogen activator (uPA). These enzymes are expressed in many cancers, especially during tissue remodeling and subsequent tumor cell invasion. Opaganib (ABC294640), a novel, orally available small molecule is a selective inhibitor of the phosphorylation of sphingosine to sphingosine-1-phosphate (S-1-P) by sphingosine kinase 2 (SPHK2). Both sphingosine kinase 1 (SPHK1) and SPHK2 are known to regulate the proliferation-inducing compound S-1-P. However, SPHK2 is more critical in cancer pathogenesis. The goal of this project was to investigate the potential antitumor effects of upamostat and opaganib, individually and in combination, on cholangiocarcinoma (CCA) xenografts in nude mice. PAX165, a patient-derived xenograft (PDX) from a surgically resected CCA, expresses substantial levels of SPHK2, PRSS1, PRSS2, and PRSS3. Four groups of 18 mice each were treated with upamostat, opaganib, both, or vehicle. Mouse weights and PAX165 tumor volumes were measured. Tumor volumes in the upamostat, opaganib, and upamostat plus opaganib groups were significantly decreased compared to the control group.

6.
J Biomed Mater Res A ; 112(5): 672-684, 2024 05.
Article in English | MEDLINE | ID: mdl-37971074

ABSTRACT

Polycaprolactone fumarate (PCLF) is a cross-linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell-cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro-architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post-processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D-printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.


Subject(s)
Fumarates , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Fumarates/pharmacology , Fumarates/chemistry , Biocompatible Materials/chemistry , Polyesters/pharmacology , Polyesters/chemistry , Tissue Engineering/methods , Bone Regeneration , Porosity , Printing, Three-Dimensional
7.
Clin Proteomics ; 20(1): 56, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053024

ABSTRACT

BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

8.
J Extracell Vesicles ; 12(12): e12385, 2023 12.
Article in English | MEDLINE | ID: mdl-38063210

ABSTRACT

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.


Subject(s)
Body Fluids , Extracellular Vesicles , Reproducibility of Results , Plasma
9.
ACS Nano ; 17(23): 23584-23594, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38033295

ABSTRACT

Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state, which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for statistical analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate and then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags colocalized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nanoenvironment where targeted moieties colocalized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.


Subject(s)
Extracellular Vesicles , Liver Neoplasms , Humans , Spectrometry, Mass, Secondary Ion , Cell Line , Extracellular Vesicles/chemistry , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism
10.
Sci Adv ; 9(46): eadi2414, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967193

ABSTRACT

Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Up-Regulation , Salvage Therapy , Neoplasms/drug therapy
11.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014341

ABSTRACT

The immune checkpoint molecule B7-H3 is regarded as one of the most promising therapeutic targets for the treatment of human cancers. B7-H3 is highly expressed in many cancers and its expression has been associated to impaired antitumor immunity and poor patient prognosis. In immunocompetent mouse tumor models, genetic deletion of B7-H3 in tumor cells enhances antitumor immune response leading to tumor shrinkage. The underlying mechanisms of B7-H3 inhibitory function remain largely uncharacterized and the identity of potential cognate(s) receptor(s) of B7-H3 is still to be defined. To better understand B7-H3 function in vivo, several studies have employed MJ18, a monoclonal antibody reported to bind murine B7-H3 and blocks its immune-inhibitory function. In this brief research report, we show that 1) MJ18 does not bind B7-H3, 2) MJ18 binds the Fc receptor FcγRIIB on surface of murine splenocytes, and 3) MJ18 does not induce tumor regression in a mouse model responsive to B7-H3 knockout. Given the high profile of B7-H3 as therapeutic target for human cancers, our work emphasizes that murine B7-H3 studies using the MJ18 antibody should be interpreted with caution. Finally, we hope that our study will motivate the scientific community to establish much-needed validated research tools to study B7-H3 biology in mouse models.

12.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662200

ABSTRACT

Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags co-localized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nano-environment where targeted moieties co-localized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.

13.
Biomater Adv ; 153: 213539, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429047

ABSTRACT

Pre-formed hydrogel scaffolds have emerged as favorable vehicles for tissue regeneration, promoting minimally invasive treatment of native tissue. However, due to the high degree of swelling and inherently poor mechanical properties, development of complex structural hydrogel scaffolds at different dimensional scales has been a continuous challenge. Herein, we take a novel approach at the intersections of engineering design and bio-ink chemistry to develop injectable pre-formed structural hydrogel scaffolds fabricated via visible light (VL) induced digital light processing (DLP). In this study, we first determined the minimum concentration of poly(ethylene glycol) diacrylate (PEGDA) to be added to the gelatin methacrylate (GelMA) bio-ink in order to achieve scalable and high printing-fidelity with desired cell adhesion, viability, spreading, and osteogenic differentiation characteristics. Despite the advantages of hybrid GelMA-PEGDA bio-ink in improving scalability and printing-fidelity, compressibility, shape-recovery, and injectability of the 3D bioprinted scaffolds were compromised. To restore these needed characteristics for minimally invasive tissue regeneration applications, we performed topological optimization to design highly compressible and injectable pre-formed (i.e., 3D bioprinted) microarchitectural scaffolds. The designed injectable pre-formed microarchitectural scaffolds showed a great capacity to retain the viability of the encapsulated cells (>72 % after 10 cycles of injection). Lastly, ex ovo chicken chorioallantoic membrane (CAM) studies revealed that the optimized injectable pre-formed hybrid hydrogel scaffold is biocompatible and supports angiogenic growth.


Subject(s)
Osteogenesis , Tissue Scaffolds , Tissue Scaffolds/chemistry , Hydrogels , Light , Gelatin/chemistry
14.
Urol Oncol ; 41(9): 393.e1-393.e7, 2023 09.
Article in English | MEDLINE | ID: mdl-37414595

ABSTRACT

INTRODUCTION: Systemic immunotherapy has changed the paradigm of treatment of advanced renal cell carcinoma, but nephrectomy continues to benefit selected patients. While we continue to identify mechanisms behind drug resistance, the effect of surgery on natural anti-tumor immunity is poorly understood. Specifically, peripheral blood mononuclear cell (PBMC) profile and tumor reactive cytotoxic T lymphocytes changes secondary to tumor resection have not been extensively characterized. Hence, we aimed to evaluate the effect of nephrectomy on PMBC profile and circulating antigen-primed CD8+ T-cells for patients undergoing solid renal mass resection. METHODS: Patients with localized or metastatic solid renal masses who underwent nephrectomy from 2016 to 2018 were enrolled. Blood samples were collected at 3 timepoints for PBMCs analysis (pre-op, 1 day, and 3 months post-op). Flow cytometry was used to identify CD11ahigh CD8+ T lymphocytes that were then further characterized according to the expression of CX3CR1/GZMB, Ki67, Bim, and PD-1. Changes in circulating CD8+ T-cells from pre-op to 1 day and 3 months post-op were evaluated using Wilcoxon signed rank tests. RESULTS: Antigen-primed CX3CR1+GZMB+ T-cells significantly increased by 3 months after surgery among patients with RCC (0.8 × 109 cells; P = 0.01). In contrast, there was a decrease in absolute numbers of Bim+ T-cells at 3 months (-1.9 × 109 cells; P = 0.02). There were no significant absolute changes in PD-1+ (-1.4 × 109; P = 0.7) and CD11ahigh CD8+ T lymphocytes (1.3 × 109; P = 0.9). Ki67+ T-cells decreased by 3 months (-0.8 × 109; P < 0.001). CONCLUSIONS: Nephrectomy is associated with an increase in cytolytic antigen-primed CD8+ T-cells and specific PBMC profile changes. Further studies are warranted to ascertain the role surgery may have in the restoration of anti-tumor immunity.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , T-Lymphocytes, Cytotoxic , Programmed Cell Death 1 Receptor/metabolism , Ki-67 Antigen/metabolism , Kidney Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/metabolism , Lymphocytes, Tumor-Infiltrating
15.
J Immunol ; 210(12): 2029-2037, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37163328

ABSTRACT

The intrinsic and acquired resistance to PD-1/PD-L1 immune checkpoint blockade is an important challenge for patients and clinicians because no reliable tool has been developed to predict individualized response to immunotherapy. In this study, we demonstrate the translational relevance of an ex vivo functional assay that measures the tumor cell killing ability of patient-derived CD8 T and NK cells (referred to as "cytotoxic lymphocytes," or CLs) isolated from the peripheral blood of patients with renal cell carcinoma. Patient-derived PBMCs were isolated before and after nephrectomy from patients with renal cell carcinoma. We compared the efficacy of U.S. Food and Drug Administration (FDA)-approved PD-1/PD-L1 inhibitors (pembrolizumab, nivolumab, atezolizumab) and a newly developed PD-L1 inhibitor (H1A Ab) in eliciting cytotoxic function. CL activity was improved at 3 mo after radical nephrectomy compared with baseline, and it was associated with higher circulating levels of tumor-reactive effector CD8 T cells (CD11ahighCX3CR1+GZMB+). Treatment of PBMCs with FDA-approved PD-1/PD-L1 inhibitors enhanced tumor cell killing activity of CLs, but a differential response was observed at the individual-patient level. H1A demonstrated superior efficacy in promoting CL activity compared with FDA-approved PD-1/PD-L1 inhibitors. PBMC immunophenotyping by mass cytometry revealed enrichment of effector CD8 T and NK cells in H1A-treated PBMCs and immunosuppressive regulatory T cells in atezolizumab-treated samples. Our study lays the ground for future investigation of the therapeutic value of H1A as a next-generation immune checkpoint inhibitor and the potential of measuring CTL activity in PBMCs as a tool to predict individual response to immune checkpoint inhibitors in patients with advanced renal cell carcinoma.


Subject(s)
Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Leukocytes, Mononuclear , Antineoplastic Agents/pharmacology , T-Lymphocytes, Regulatory , Kidney Neoplasms/drug therapy , Nephrectomy , CD8-Positive T-Lymphocytes
16.
Neuro Oncol ; 25(9): 1605-1616, 2023 09 05.
Article in English | MEDLINE | ID: mdl-36821432

ABSTRACT

BACKGROUND: High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS: We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS: Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION: The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Chick Embryo , Mice , Animals , Temozolomide/pharmacology , Heterografts , Carboplatin , Glioma/drug therapy , Brain Neoplasms/drug therapy , Disease Models, Animal , Xenograft Model Antitumor Assays
17.
Oncologist ; 28(4): 297-308, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36745503

ABSTRACT

Renal cell carcinoma (RCC) is among the top 10 most common cancers in both men and women with an estimated 75 000 cases each year in the US. Over the last decade, the therapeutic landscape for patients with metastatic RCC has significantly evolved, with immunotherapy emerging as the new front-line therapy. Despite significant improvement in toxicity profile and survival outcomes, key concerns such as patient selection, treatment sequencing, and intrinsic and acquired resistance remain unresolved. Emerging options such as antibody-based therapeutics (eg, anti-CD70, anti-CA9, and anti-ENPP3) are being explored in clinical trials for patients with cancer resistant or refractory to current immunotherapies. Despite positive results for hematological cancers, breast cancer, and more recently bladder cancer, most antibody-based therapies failed to improve the outcomes in patients with advanced RCC. This underscores the need to understand the underlying causes of failed responses to this treatment class, which will ultimately support the rational design of more effective and tolerable treatments. In this review, we summarize the evolving landscape of RCC therapeutics and describe recent clinical trials with emerging antibody-based therapeutics. We also describe the challenges that need to be overcome for the successful creation of therapeutic antibodies for treating RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Male , Humans , Female , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Immunotherapy/methods , Antibodies
18.
Int J Radiat Oncol Biol Phys ; 114(4): 684-692, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35878715

ABSTRACT

Prostate cancer ranges from localized, low risk to metastatic, morbid disease. Although radiation therapy (RT) is commonly incorporated in the treatment of early disease or for palliation of symptomatic lesions, its role in extending survival in metastatic disease is less well-established. Here, we review the available evidence surrounding localized RT in the presence of oligometastatic disease and metastasis-directed therapy in both hormone-sensitive and hormone-resistant prostate cancer. We further outline potential future incorporation of RT as an immune-sensitizing therapy and the importance of highly sensitive imaging modalities in considering RT in metastatic disease.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Hormones , Humans , Male , Neoplasm Metastasis/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiosurgery/methods
19.
Nanoscale ; 14(27): 9781-9795, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35770741

ABSTRACT

Extracellular vesicles (EVs) are microscopic particles released naturally in biofluids by all cell types. Since EVs inherits genomic and proteomic patterns from the cell of origin, they are emerging as promising liquid biomarkers for human diseases. Flow cytometry is a popular method that is able to detect, characterize and determine the concentration of EVs with minimal sample preparation. However, the limited awareness of the scientific community to utilize standardization and calibration methods of flow cytometers is an important roadblock for data reproducibility and inter-laboratory comparison. A significant collaborative effort by the Extracellular Vesicle Flow Cytometry Working Group has led to the development of guidelines and best practices for using flow cytometry and reporting data in a way to improve rigor and reproducibility in EV research. At first look, standardization and calibration of flow cytometry for EV detection may seem burdensome and technically challenging for non-academic laboratories with limited technical training and knowledge in EV flow cytometry. In this study, we build on prior research efforts and provide a systematic approach to evaluate the performance of a high sensitivity flow cytometer (herein Apogee A60-Micro Plus) and fine-tune settings to improve detection sensitivity for EVs. We performed calibration of our flow cytometer to generate data with comparable units (nanometers, MESF). Finally, we applied our optimized protocol to measure the concentrations of prostate-derived EVs in healthy individuals and prostate cancer patients. In conclusion, our proof-of-feasibility study can serve as a scientific and technical framework for other groups motivated in using flow cytometry for EV research.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms , Calibration , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Humans , Male , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Proteomics , Reference Standards , Reproducibility of Results
20.
BMC Urol ; 22(1): 90, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35751046

ABSTRACT

INTRODUCTION AND OBJECTIVES: PD-L1 and B7-H3 have been found to be overexpressed in urothelial carcinoma (UC) of the urinary bladder. Recent studies have also demonstrated that B7-H3 and PD-L1 can promote resistance to platinum-based drugs but the predictive value of B7-H3 expression in patients treated with platinum-based chemotherapy is unknown. This study aims to investigate the association of PD-L1 and B7-H3 tumor expression with oncological outcomes in patients who underwent radical cystectomy (RC) and received subsequent adjuvant chemotherapy. MATERIALS AND METHODS: Immunohistochemistry was performed on paraffin-embedded sections from bladder and lymph node specimens of 81 patients who had RC for bladder cancer. PD-L1 and B7-H3 expression on tumor cells was assessed by immunohistochemistry in both primary tumors and lymph node specimens. Association with clinicopathologic outcomes was determined using Fisher's exact test and postoperative survival using Kaplan-Meier survival curves and Cox regression model. RESULTS: B7-H3 expression in cystectomy specimens was more common than PD-L1 expression (72.8% vs. 35.8%). For both markers, no association was found with pathologic tumor stage, lymph node (LN) status, and histological subtype. Similar findings were observed for double-positive tumors (PD-L1+B7-H3+). Concordance between the primary tumor and patient-matched lymph nodes was found in 76.2% and 54.1% of patients for PD-L1 and B7-H3, respectively. PD-L1 tumor expression was not associated with oncologic outcomes. However, B7-H3 expression was associated with recurrence-free survival (HR: 2.38, 95% CI 1.06-5.31, p = 0.035) and cancer-specific survival (HR: 2.67, 95% CI 1.18-6.04, p = 0.019). CONCLUSIONS: In our single institutional study, B7-H3 is highly expressed in patients with UC treated with adjuvant chemotherapy and it was associated with decreased recurrence-free survival and cancer-specific survival. Pending further validation in larger cohorts, B7-H3 expression may function as a predictor of response to adjuvant chemotherapy and thus be useful in patient and regimen selection.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , B7-H1 Antigen , Carcinoma, Transitional Cell/surgery , Chemotherapy, Adjuvant , Cystectomy , Humans , Retrospective Studies , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL