Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 662, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521341

ABSTRACT

BACKGROUND: Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS: High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS: This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.


Subject(s)
Altitude , Peromyscus , Animals , Genomics , Models, Animal , Peromyscus/genetics , Polymorphism, Genetic
2.
Biochem Pharmacol ; 182: 114280, 2020 12.
Article in English | MEDLINE | ID: mdl-33049245

ABSTRACT

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Subject(s)
Azepines/pharmacology , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/antagonists & inhibitors , DEAD-box RNA Helicases/metabolism , Imidazoles/pharmacology , Cell Line, Tumor , Cytoplasmic Granules/drug effects , Humans , RNA, Small Interfering/antagonists & inhibitors , RNA, Small Interfering/metabolism
3.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Article in English | MEDLINE | ID: mdl-31802418

ABSTRACT

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Subject(s)
Azepines/pharmacology , Cocaine/toxicity , DEAD-box RNA Helicases/antagonists & inhibitors , Imidazoles/pharmacology , Microglia/drug effects , tat Gene Products, Human Immunodeficiency Virus/toxicity , AIDS Dementia Complex/drug therapy , AIDS Dementia Complex/enzymology , Animals , Azepines/therapeutic use , Cells, Cultured , DEAD-box RNA Helicases/metabolism , Dopamine Uptake Inhibitors/toxicity , Dose-Response Relationship, Drug , Female , Imidazoles/therapeutic use , Male , Microglia/enzymology , Rats , Rats, Sprague-Dawley
4.
DNA Cell Biol ; 38(9): 969-981, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31355672

ABSTRACT

Analysis of gene expression can be challenging, especially if it involves genetically diverse populations that exhibit high variation in their individual expression profile. Despite this variation, it is conceivable that in the same individuals a high degree of coordination is maintained between transcripts that belong to the same signaling modules and are associated with related biological functions. To explore this further, we calculated the correlation in the expression levels between each of ATF4, CHOP (DDIT3), GRP94, DNAJB9 (ERdj4), DNAJ3C (P58IPK), and HSPA5 (BiP/GRP78) with the whole transcriptome in primary fibroblasts from deer mice following induction of endoplasmic reticulum (ER) stress. Since these genes are associated with different transducers of the unfolded protein response (UPR), we postulated that their profile, in terms of correlation of transcripts, reflects distinct UPR branches engaged, and therefore different biological processes. Standard gene ontology analysis was able to predict major functions associated with the corresponding transcript, and of the UPR arm related to that, namely regulation of the apoptotic response by ATF4 (PERK arm) and the ER stress-associated degradation for GRP94 (IRE1). BiP, being a global regulator of the UPR, was associated with activation of ER stress in a rather global manner. Pairwise comparison in the correlation coefficients for these genes' associated transcriptome showed the relevance of selected genes in terms of expression profiles. Conventional assessment of differential gene expression was incapable of providing meaningful information and pointed only to a generic association with stress. Collectively, this approach suggests that by evaluating the degree of coordination in gene expression, in genetically diverse biological specimens, may be useful in assigning genes in transcriptome networks, and more importantly in linking signaling nodules to specific biological functions and processes.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Animals , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Fibroblasts/drug effects , Fibroblasts/metabolism , Peromyscus , Transcriptome , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...