Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Bioact Mater ; 37: 253-268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38585489

ABSTRACT

The chronic shortage of organs and tissues for transplantation represents a dramatic burden on healthcare systems worldwide. Tissue engineering offers a potential solution to address these shortages, but several challenges remain, with prevascularization being a critical factor for in vivo survival and integration of tissue engineering products. Concurrently, a different challenge hindering the clinical implementation of such products, regards their efficient preservation from the fabrication site to the bedside. Hypothermia has emerged as a potential solution for this issue due to its milder effects on biologic systems in comparison with other cold preservation methodologies. Its impact on prevascularization, however, has not been well studied. In this work, 3D prevascularized constructs were fabricated using adipose-derived stromal vascular fraction cells and preserved at 4 °C using Hypothermosol or basal culture media (α-MEM). Hypothermosol efficiently preserved the structural and cellular integrity of prevascular networks as compared to constructs before preservation. In contrast, the use of α-MEM led to a clear reduction in prevascular structures, with concurrent induction of high levels of apoptosis and autophagy at the cellular level. In vivo evaluation using a chorioallantoic membrane model demonstrated that, in opposition to α-MEM, Hypothermosol preservation retained the angiogenic potential of constructs before preservation by recruiting a similar number of blood vessels from the host and presenting similar integration with host tissue. These results emphasize the need of studying the impact of preservation techniques on key properties of tissue engineering constructs such as prevascularization, in order to validate and streamline their clinical application.

2.
Analyst ; 149(10): 2812-2825, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38644740

ABSTRACT

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.


Subject(s)
Cell Separation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/blood , Cell Separation/methods , Cell Separation/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
3.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667269

ABSTRACT

Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.


Subject(s)
Exosomes , Fabry Disease , Inflammation , Fabry Disease/genetics , Fabry Disease/metabolism , Fabry Disease/pathology , Humans , Inflammation/pathology , Exosomes/metabolism , Animals , Extracellular Vesicles/metabolism
4.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623558

ABSTRACT

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

5.
J Clin Med ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297894

ABSTRACT

Intermittent fasting (IF) is an emerging dietetic intervention that has been associated with improved metabolic parameters. Nowadays, the most common IF protocols are Alternate-Day Fasting (ADF) and Time-Restricted Fasting (TRF), but in this review and meta-analysis we have also considered Religious Fasting (RF), which is similar to TRF but against the circadian rhythm. The available studies usually include the analysis of a single specific IF protocol on different metabolic outcomes. Herein, we decided to go further and to conduct a systematic review and meta-analysis on the advantages of different IF protocols for metabolic homeostasis in individuals with different metabolic status, such as with obesity, diabetes mellitus type 2 (T2D) and metabolic syndrome (MetS). Systematic searches (PubMed, Scopus, Trip Database, Web of Knowledge and Embase, published before June 2022) of original articles in peer-review scientific journals focusing on IF and body composition outcomes were performed. Sixty-four reports met the eligibility criteria for the qualitative analysis and forty-seven for the quantitative analysis. Herein, we showed that ADF protocols promoted the major beneficial effects in the improvement of dysregulated metabolic conditions in comparison with TRF and RF protocols. Furthermore, obese and MetS individuals are the most benefited with the introduction of these interventions, through the improvement of adiposity, lipid homeostasis and blood pressure. For T2D individuals, IF impact was more limited, but associated with their major metabolic dysfunctions-insulin homeostasis. Importantly, through the integrated analysis of distinct metabolic-related diseases, we showed that IF seems to differently impact metabolic homeostasis depending on an individual's basal health status and type of metabolic disease.

6.
Cancers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36900154

ABSTRACT

Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.

7.
PLoS Genet ; 19(2): e1010641, 2023 02.
Article in English | MEDLINE | ID: mdl-36791155

ABSTRACT

Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.


Subject(s)
Cyclin-Dependent Kinases , Saccharomyces cerevisiae Proteins , Cyclin-Dependent Kinases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Repressor Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Cyclins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Phosphates/metabolism , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Serine-Threonine Kinases/metabolism
8.
Nutrients ; 14(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297052

ABSTRACT

Nutrition has relevant consequences for human health and increasing pieces of evidence indicate that medicinal mushrooms have several beneficial effects. One of the main issues in Western countries is represented by the challenges of aging and age-related diseases, such as neurodegenerative disorders. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with α-synuclein misfolding, also found in other pathologies collectively called synucleinopathies. Here, we show that aqueous extracts of two edible mushrooms, Grifola frondosa and Hericium erinaceus, represent a valuable source of ß-glucans and exert anti-aging effects in yeast. Their beneficial effects are mediated through the inhibition of the Ras/PKA pathway, with increased expression of heat shock proteins, along with a consistent increase of both mean and maximal lifespans. These fungal extracts also reduce the toxicity of α-synuclein heterologously expressed in yeast cells, resulting in reduced ROS levels, lower α-synuclein membrane localization, and protein aggregation. The neuroprotective activity of G. frondosa extract was also confirmed in a PD model of Drosophila melanogaster. Taken together, our data suggest the use of G. frondosa and H. erinaceus as functional food to prevent aging and age-related disorders, further supporting the neuro-healthy properties of these medicinal mushroom extracts.


Subject(s)
Agaricales , Aging , Grifola , beta-Glucans , Humans , alpha-Synuclein , beta-Glucans/pharmacology , Drosophila melanogaster , Heat-Shock Proteins , Protein Aggregates , Reactive Oxygen Species , Saccharomyces cerevisiae
9.
Biochem Mol Biol Educ ; 49(6): 870-881, 2021 11.
Article in English | MEDLINE | ID: mdl-34406714

ABSTRACT

Medical students tend to have difficulties in developing a holistic view of metabolic pathway and hormone regulation. To address this issue, an interactive activity was implemented for first-year medical students at the School of Medicine, University of Minho, Portugal. Students' previous knowledge on metabolic pathways was evaluated by a pre-test followed by an interactive activity. In the supervised activity, students were challenged to elaborate a diagrammatic representation regarding enzymes, co-factors, and hormonal metabolic regulation in early fasting during the night, as well as in well-fed conditions. The activity was concluded with a post-test to determine the students' learning gains and a few days later students were evaluated by a final exam. Afterwards, students evaluated the activity by filling a questionnaire. Results from four different cohorts showed that the activity resulted in significant learning gains, particularly favoring students who have less prior knowledge. The comparison between the pre-test and the final exam also revealed significant learning gains for low achievers students. On the questionnaires, the majority of the students rated the activity as good or very good. Students agreed that this activity promotes: (a) reactivation of previous knowledge; (b) a better understanding of the interconnections between the metabolic pathways; (c) the application of learned concepts in real scenarios; and (d) sharing knowledge with peers. This study describes an active, unpretentious, and easily implemented activity available for early medical and biochemical curricula.


Subject(s)
Education, Medical, Undergraduate , Students, Medical , Curriculum , Educational Measurement , Humans , Learning
10.
Cancers (Basel) ; 13(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809172

ABSTRACT

The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 ß levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 ß levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.

11.
Cancers (Basel) ; 13(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809750

ABSTRACT

Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.

12.
Bioorg Chem ; 100: 103942, 2020 07.
Article in English | MEDLINE | ID: mdl-32450388

ABSTRACT

A selection of new chromeno[2,3-b]pyridines was prepared from chromenylacrylonitriles and N-substituted piperazines, using a novel and efficient synthetic procedure. The compounds were tested for their anticancer activity using breast cancer cell lines MCF-7, Hs578t and MDA-MB-231 and the non-neoplastic cell line MCF-10A for toxicity evaluation. In general, compounds showed higher activity towards the luminal breast cancer subtype (MCF-7), competitive with the reference compound Doxorubicin. The in vivo toxicity assay using C. elegans demonstrated a safe profile for the most active compounds. Chromene 3f revealed a promising drug profile, inhibiting cell growth and proliferation, inducing cell cycle arrest in G2/M phase, apoptosis and microtubule destabilization. The new compounds presented exciting bioactive features and may be used as lead compounds in cancer related drug discovery.


Subject(s)
Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Pyrimidines/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
13.
Biology (Basel) ; 9(3)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245178

ABSTRACT

Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples.

14.
Biochim Biophys Acta Biomembr ; 1862(8): 183255, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32145284

ABSTRACT

The plant defensin HsAFP1 is characterized by broad-spectrum antifungal activity and induces apoptosis in Candida albicans. In this study, we performed a transcriptome analysis on C. albicans cultures treated with HsAFP1 to gain further insight in the antifungal mode of action of HsAFP1. Various genes coding for cell surface proteins, like glycosylphosphatidylinositol (GPI)-anchored proteins, and proteins involved in cation homeostasis, autophagy and in cell cycle were differentially expressed upon HsAFP1 treatment. The biological validation of these findings was performed in the model yeast Saccharomyces cerevisiae. To discriminate between events linked to HsAFP1's antifungal activity and those that are not, we additionally used an inactive HsAFP1 mutant. We demonstrated that (i) HsAFP1-resistent S. cerevisiae mutants that are characterized by a defect in processing GPI-anchors are unable to internalize HsAFP1, and (ii) moderate doses (FC50, fungicidal concentration resulting in 50% killing) of HsAFP1 induce autophagy in S. cerevisiae, while high HsAFP1 doses result in vacuolar dysfunction. Vacuolar function is an important determinant of replicative lifespan (RLS) under dietary restriction (DR). In line, HsAFP1 specifically reduces RLS under DR. Lastly, (iii) HsAFP1 affects S. cerevisiae cell cycle in the G2/M phase. However, the latter HsAFP1-induced event is not linked to its antifungal activity, as the inactive HsAFP1 mutant also impairs the G2/M phase. In conclusion, we demonstrated that GPI-anchored proteins are involved in HsAFP1's internalization, and that HsAFP1 induces autophagy, vacuolar dysfunction and impairment of the cell cycle. Collectively, all these data provide novel insights in the mode of action of HsAFP1 as well as in S. cerevisiae tolerance mechanisms against this peptide.


Subject(s)
Autophagy/drug effects , Defensins/chemistry , Heuchera/chemistry , Saccharomyces cerevisiae/drug effects , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Apoptosis/drug effects , Candida albicans/drug effects , Cell Cycle/drug effects , Defensins/genetics , Defensins/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Saccharomyces cerevisiae/genetics
15.
Anticancer Drugs ; 31(5): 507-517, 2020 06.
Article in English | MEDLINE | ID: mdl-31934887

ABSTRACT

Different types of tumors often present an overexpression of cyclooxygenase-2. The aim of this study was to evaluate the effects of parecoxib (NSAID, cyclooxygenase-2 selective inhibitor) in the behavior of the human osteosarcoma MG-63 cell line, concerning several biological features. Cells were exposed to several concentrations of parecoxib for 48 hours. Cell viability/proliferation, cyclooxygenase-2 expression, morphologic alterations, membrane integrity, cell cycle evaluation, cell death and genotoxicity were evaluated. When compared with untreated cells, parecoxib led to a marked decrease in cell viability/proliferation, in COX-2 expression and changes in cell morphology, in a concentration-dependent manner. Cell recuperation was observed after incubation with drug-free medium. Parecoxib exposure increased lactate dehydrogenase release, an arrest of the cell cycle at S-phase and G2/M-phase, as well as growth of the sub-G0/G1-fraction and increased DNA damage. Parecoxib led to a slight increase of necrosis regulated cell death in treated cells, and an increase of autophagic vacuoles, in a concentration-dependent manner. In this study, parecoxib showed antitumor effects in the MG-63 human osteosarcoma cells. The potential mechanism was inhibiting cell proliferation and promoting necrosis. These results further suggested that parecoxib might be a potential candidate for in-vivo studies.


Subject(s)
Bone Neoplasms/pathology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/chemistry , Isoxazoles/pharmacology , Osteosarcoma/pathology , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/enzymology , Cell Cycle , Cell Proliferation , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Humans , Osteosarcoma/drug therapy , Osteosarcoma/enzymology , Tumor Cells, Cultured
16.
Microb Cell ; 6(11): 509-523, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31799324

ABSTRACT

During vinification Saccharomyces cerevisiae cells are frequently exposed to high concentrations of sulfur dioxide (SO2) that is used to avoid overgrowth of unwanted bacteria or fungi present in the must. Up to now the characterization of the molecular mechanisms by which S. cerevisiae responds and tolerates SO2 was focused on the role of the sulfite efflux pump Ssu1 and investigation on the involvement of other players has been scarce, especially at a genome-wide level. In this work, we uncovered the essential role of the poorly characterized transcription factor Com2 in tolerance and response of S. cerevisiae to stress induced by SO2 at the enologically relevant pH of 3.5. Transcriptomic analysis revealed that Com2 controls, directly or indirectly, the expression of more than 80% of the genes activated by SO2, a percentage much higher than the one that could be attributed to any other stress-responsive transcription factor. Large-scale phenotyping of the yeast haploid mutant collection led to the identification of 50 Com2-targets contributing to the protection against SO2 including all the genes that compose the sulfate reduction pathway (MET3, MET14, MET16, MET5, MET10) and the majority of the genes required for biosynthesis of lysine (LYS2, LYS21, LYS20, LYS14, LYS4, LYS5, LYS1 and LYS9) or arginine (ARG5,6, ARG4, ARG2, ARG3, ARG7, ARG8, ORT1 and CPA1). Other uncovered determinants of resistance to SO2 (not under the control of Com2) included genes required for function and assembly of the vacuolar proton pump and enzymes of the antioxidant defense, consistent with the observed cytosolic and mitochondrial accumulation of reactive oxygen species in SO2-stressed yeast cells.

17.
Cells ; 8(9)2019 08 24.
Article in English | MEDLINE | ID: mdl-31450562

ABSTRACT

The cancer metabolic reprogramming allows the maintenance of tumor proliferation, expansion and survival by altering key bioenergetics, biosynthetic and redox functions to meet the higher demands of tumor cells. In addition, several metabolites are also needed to perform signaling functions that further promote tumor growth and progression. These metabolic alterations have been exploited in different cancers, including acute myeloid leukemia, as novel therapeutic strategies both in preclinical models and clinical trials. Here, we review the complexity of acute myeloid leukemia (AML) metabolism and discuss how therapies targeting different aspects of cellular metabolism have demonstrated efficacy and how they provide a therapeutic window that should be explored to target the metabolic requirements of AML cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Energy Metabolism/drug effects , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Clinical Trials as Topic , Disease Progression , Humans , Leukemia, Myeloid, Acute/metabolism , Signal Transduction
18.
Aging Cell ; 18(4): e12922, 2019 08.
Article in English | MEDLINE | ID: mdl-30977294

ABSTRACT

α-Synuclein (aSyn) toxicity is associated with cell cycle alterations, activation of DNA damage responses (DDR), and deregulation of autophagy. However, the relationships between these phenomena remain largely unknown. Here, we demonstrate that in a yeast model of aSyn toxicity and aging, aSyn expression induces Ras2-dependent growth signaling, cell cycle re-entry, DDR activation, autophagy, and autophagic degradation of ribonucleotide reductase 1 (Rnr1), a protein required for the activity of ribonucleotide reductase and dNTP synthesis. These events lead to cell death and aging, which are abrogated by deleting RAS2, inhibiting DDR or autophagy, or overexpressing RNR1. aSyn expression in human H4 neuroglioma cells also induces cell cycle re-entry and S-phase arrest, autophagy, and degradation of RRM1, the human homologue of RNR1, and inhibiting autophagic degradation of RRM1 rescues cells from cell death. Our findings represent a model for aSyn toxicity that has important implications for understanding synucleinopathies and other age-related neurodegenerative diseases.


Subject(s)
Autophagy/genetics , Proteolysis , Ribonucleotide Reductases/metabolism , S Phase/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/metabolism , Cell Death/genetics , Cell Line, Tumor , Cellular Senescence/genetics , DNA Damage/genetics , Genetic Vectors , Glioma/pathology , Humans , Parkinson Disease/metabolism , Transfection , alpha-Synuclein/genetics , alpha-Synuclein/toxicity
19.
Prog Mol Subcell Biol ; 58: 217-242, 2019.
Article in English | MEDLINE | ID: mdl-30911895

ABSTRACT

Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson's, Huntington's or Alzheimer's diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.


Subject(s)
Aging/physiology , Longevity/physiology , Models, Biological , Neurodegenerative Diseases/physiopathology , Rejuvenation/physiology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Aging/drug effects , Aging/genetics , Animals , Caloric Restriction , Humans , Longevity/drug effects , Longevity/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
20.
Cell Death Differ ; 26(8): 1411-1427, 2019 08.
Article in English | MEDLINE | ID: mdl-30442948

ABSTRACT

Imbalance of neuronal proteostasis associated with misfolding and aggregation of Tau protein is a common neurodegenerative feature in Alzheimer's disease (AD) and other Tauopathies. Consistent with suggestions that lifetime stress may be an important AD precipitating factor, we previously reported that environmental stress and high glucocorticoid (GC) levels induce accumulation of aggregated Tau; however, the molecular mechanisms for such process remain unclear. Herein, we monitor a novel interplay between RNA-binding proteins (RBPs) and autophagic machinery in the underlying mechanisms through which chronic stress and high GC levels impact on Tau proteostasis precipitating Tau aggregation. Using molecular, pharmacological and behavioral analysis, we demonstrate that chronic stress and high GC trigger mTOR-dependent inhibition of autophagy, leading to accumulation of Tau aggregates and cell death in P301L-Tau expressing mice and cells. In parallel, we found that environmental stress and GC disturb cellular homeostasis and trigger the insoluble accumulation of different RBPs, such as PABP, G3BP1, TIA-1, and FUS, shown to form stress granules (SGs) and Tau aggregation. Interestingly, an mTOR-driven pharmacological stimulation of autophagy attenuates the GC-driven accumulation of Tau and SG-related proteins as well as the related cell death, suggesting a critical interface between autophagy and the response of the SG-related protein in the neurodegenerative potential of chronic stress and GC. These studies provide novel insights into the RNA-protein intracellular signaling regulating the precipitating role of environmental stress and GC on Tau-driven brain pathology.


Subject(s)
Alzheimer Disease/metabolism , Autophagy , Heat-Shock Proteins/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...