Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38617255

ABSTRACT

Standard single-cell RNA-sequencing analysis (scRNA-seq) workflows consist of converting raw read data into cell-gene count matrices through sequence alignment, followed by analyses including filtering, highly variable gene selection, dimensionality reduction, clustering, and differential expression analysis. Seurat and Scanpy are the most widely-used packages implementing such workflows, and are generally thought to implement individual steps similarly. We investigate in detail the algorithms and methods underlying Seurat and Scanpy and find that there are, in fact, considerable differences in the outputs of Seurat and Scanpy. The extent of differences between the programs is approximately equivalent to the variability that would be introduced in benchmarking scRNA-seq datasets by sequencing less than 5% of the reads or analyzing less than 20% of the cell population. Additionally, distinct versions of Seurat and Scanpy can produce very different results, especially during parts of differential expression analysis. Our analysis highlights the need for users of scRNA-seq to carefully assess the tools on which they rely, and the importance of developers of scientific software to prioritize transparency, consistency, and reproducibility for their tools.

2.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38377393

ABSTRACT

MOTIVATION: Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS: To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The manual and source code are available at https://github.com/pachterlab/gget.


Subject(s)
Proteins , Software , Amino Acid Motifs , Databases, Protein , Proteins/chemistry , Amino Acid Sequence
3.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38168363

ABSTRACT

There are an estimated 300,000 mammalian viruses from which infectious diseases in humans may arise. They inhabit human tissues such as the lungs, blood, and brain and often remain undetected. Efficient and accurate detection of viral infection is vital to understanding its impact on human health and to make accurate predictions to limit adverse effects, such as future epidemics. The increasing use of high-throughput sequencing methods in research, agriculture, and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on highly conserved amino acid domains, which enables the detection of RNA viruses covering up to 1012 virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We applied our method to identify putative novel viruses in rhesus macaque PBMC data that display cell type specificity and whose presence correlates with altered host gene expression.

4.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38045414

ABSTRACT

The term "RNA-seq" refers to a collection of assays based on sequencing experiments that involve quantifying RNA species from bulk tissue, from single cells, or from single nuclei. The kallisto, bustools, and kb-python programs are free, open-source software tools for performing this analysis that together can produce gene expression quantification from raw sequencing reads. The quantifications can be individualized for multiple cells, multiple samples, or both. Additionally, these tools allow gene expression values to be classified as originating from nascent RNA species or mature RNA species, making this workflow amenable to both cell-based and nucleus-based assays. This protocol describes in detail how to use kallisto and bustools in conjunction with a wrapper, kb-python, to preprocess RNA-seq data.

5.
bioRxiv ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37645732

ABSTRACT

Exploratory spatial data analysis (ESDA) can be a powerful approach to understanding single-cell genomics datasets, but it is not yet part of standard data analysis workflows. In particular, geospatial analyses, which have been developed and refined for decades, have yet to be fully adapted and applied to spatial single-cell analysis. We introduce the Voyager platform, which systematically brings the geospatial ESDA tradition to (spatial) -omics, with local, bivariate, and multivariate spatial methods not yet commonly applied to spatial -omics, united by a uniform user interface. Using Voyager, we showcase biological insights that can be derived with its methods, such as biologically relevant negative spatial autocorrelation. Underlying Voyager is the SpatialFeatureExperiment data structure, which combines Simple Feature with SingleCellExperiment and AnnData to represent and operate on geometries bundled with gene expression data. Voyager has comprehensive tutorials demonstrating ESDA built on GitHub Actions to ensure reproducibility and scalability, using data from popular commercial technologies. Voyager is implemented in both R/Bioconductor and Python/PyPI, and features compatibility tests to ensure that both implementations return consistent results.

6.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37292888

ABSTRACT

Maintaining motor skills is crucial for an animal's survival, enabling it to endure diverse perturbations throughout its lifespan, such as trauma, disease, and aging. What mechanisms orchestrate brain circuit reorganization and recovery to preserve the stability of behavior despite the continued presence of a disturbance? To investigate this question, we chronically silenced a fraction of inhibitory neurons in a brain circuit necessary for singing in zebra finches. Song in zebra finches is a complex, learned motor behavior and central to reproduction. This manipulation altered brain activity and severely perturbed song for around two months, after which time it was precisely restored. Electrophysiology recordings revealed abnormal offline dynamics, resulting from chronic inhibition loss, some aspects of which returned to normal as the song recovered. However, even after the song had fully recovered, the levels of neuronal firing in the premotor and motor areas did not return to a control-like state. Single-cell RNA sequencing revealed that chronic silencing of interneurons led to elevated levels of microglia and MHC I, which were also observed in normal juveniles during song learning. These experiments demonstrate that the adult brain can overcome extended periods of abnormal activity, and precisely restore a complex behavior, without recovering normal neuronal dynamics. These findings suggest that the successful functional recovery of a brain circuit after a perturbation can involve more than mere restoration to its initial configuration. Instead, the circuit seems to adapt and reorganize into a new state capable of producing the original behavior despite the persistence of some abnormal neuronal dynamics.

7.
J Neurosci ; 43(13): 2222-2241, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36868853

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).


Subject(s)
Depressive Disorder, Major , Selective Serotonin Reuptake Inhibitors , Animals , Humans , Selective Serotonin Reuptake Inhibitors/pharmacology , Fluoxetine/pharmacology , Escitalopram , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/metabolism , Citalopram/pharmacology , Mammals
8.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36610989

ABSTRACT

MOTIVATION: A recurring challenge in interpreting genomic data is the assessment of results in the context of existing reference databases. With the increasing number of command line and Python users, there is a need for tools implementing automated, easy programmatic access to curated reference information stored in a diverse collection of large, public genomic databases. RESULTS: gget is a free and open-source command line tool and Python package that enables efficient querying of genomic reference databases, such as Ensembl. gget consists of a collection of separate but interoperable modules, each designed to facilitate one type of database querying required for genomic data analysis in a single line of code. AVAILABILITY AND IMPLEMENTATION: The manual and source code are available at https://github.com/pachterlab/gget. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Genomics/methods , Genome , Databases, Factual , Data Analysis
10.
Elife ; 112022 01 04.
Article in English | MEDLINE | ID: mdl-34982029

ABSTRACT

Nicotinic partial agonists provide an accepted aid for smoking cessation and thus contribute to decreasing tobacco-related disease. Improved drugs constitute a continued area of study. However, there remains no reductionist method to examine the cellular and subcellular pharmacokinetic properties of these compounds in living cells. Here, we developed new intensity-based drug-sensing fluorescent reporters (iDrugSnFRs) for the nicotinic partial agonists dianicline, cytisine, and two cytisine derivatives - 10-fluorocytisine and 9-bromo-10-ethylcytisine. We report the first atomic-scale structures of liganded periplasmic binding protein-based biosensors, accelerating development of iDrugSnFRs and also explaining the activation mechanism. The nicotinic iDrugSnFRs detect their drug partners in solution, as well as at the plasma membrane (PM) and in the endoplasmic reticulum (ER) of cell lines and mouse hippocampal neurons. At the PM, the speed of solution changes limits the growth and decay rates of the fluorescence response in almost all cases. In contrast, we found that rates of membrane crossing differ among these nicotinic drugs by >30-fold. The new nicotinic iDrugSnFRs provide insight into the real-time pharmacokinetic properties of nicotinic agonists and provide a methodology whereby iDrugSnFRs can inform both pharmaceutical neuroscience and addiction neuroscience.


Subject(s)
Alkaloids/chemistry , Azepines/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Nicotinic Agonists/chemistry , Smoking Cessation , Alkaloids/metabolism , Animals , Azocines/chemistry , Azocines/metabolism , Fluorescence , Humans , Ligands , Mice , Quinolizines/chemistry , Quinolizines/metabolism
11.
Sci Rep ; 10(1): 21759, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303831

ABSTRACT

Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Molecular Diagnostic Techniques , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...