Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Hemorheol Microcirc ; 86(3): 303-312, 2024.
Article in English | MEDLINE | ID: mdl-37927250

ABSTRACT

Blood microrheology depends on the constituents of blood plasma, the interaction between blood cells resulting in red blood cell (RBC) and platelets aggregation, and adhesion of RBC, platelets and leukocytes to vascular endothelium. The main plasma protein molecule -actuator of RBC aggregation is fibrinogen. In this paper the effect of interaction between the endothelium and RBC at different fibrinogen concentrations on the RBC microrheological properties was investigated in vitro. Laser tweezers were used to measure the RBC-endothelium interaction forces. It was shown for the first time that the interaction forces between RBC and endothelium are comparable with the RBC aggregation forces, they increase with fibrinogen concentration and reach the saturation level of about 4 pN at the concentration of 4 mg/ml. These results are important for better understanding the mechanisms of RBC and endothelium interaction and developing the novel therapeutic protocols of the microrheology correction in different pathologies.


Subject(s)
Fibrinogen , Optical Tweezers , Endothelial Cells , Erythrocytes , Erythrocyte Aggregation
2.
Life (Basel) ; 13(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37895425

ABSTRACT

Coronary heart disease (CHD) and atrial fibrillation (AF) pose significant health risks and require accurate diagnostic tools to assess the severity and progression of the diseases. Traditional diagnostic methods have limitations in providing detailed information about blood flow characteristics, particularly in the microcirculation. This study's objective was to examine and compare the microcirculation in both healthy volunteers and patient groups with CHD and AF. Furthermore, this study aimed to identify a relationship between blood microcirculation parameters and endothelial function. Digital capillaroscopy was employed to assess the microcirculation parameters, for example, such as capillary blood flow velocity, the size of red blood cell aggregates, and the number of aggregates per min and per running mm. The results indicate significant alterations in blood flow characteristics among patients with CHD and AF compared to healthy volunteers. For example, capillary blood flow velocity is statistically significantly decreased in the case of CHD and AF compared to the healthy volunteers (p < 0.001). Additionally, the correlation between the measured parameters is different for the studied groups of patients and healthy volunteers. These findings highlight the potential of digital capillaroscopy as a non-invasive tool for evaluating blood flow abnormalities (red blood cell aggregates and decreased capillary blood flow velocity) in cardiovascular diseases, aiding in early diagnosis and disease management.

3.
Materials (Basel) ; 14(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34683512

ABSTRACT

Titanium dioxide (TiO2) is considered to be a nontoxic material and is widely used in a number of everyday products, such as sunscreen. TiO2 nanoparticles (NP) are also considered as prospective agents for photodynamic therapy and drug delivery. These applications require an understanding of the potential effects of TiO2 on the blood system and its components upon administration. In the presented work, we analyze the interaction of TiO2 nanoparticles of different crystal phases (anatase and rutile) with individual rat Red Blood Cells (RBC) and the TiO2 influence on the oxygenation state and functionality of RBC, estimated via analysis of Raman spectra of Hemoglobin (Hb) and their distribution along individual RBC. Raman spectral signals also allow localization of the TiO2 NP on the RBC. No penetration of the NP inside RBC was observed; however, both kinds of TiO2 NP adsorbed on the RBC membrane can affect the Hb state. Mechanisms involving the NP-membrane-Hb interaction, resulting in partial deoxygenation of Hb and TiO2 photothermal effect on Hb under Raman laser excitation, are suggested. The possible influence on the safety of TiO2 use in advanced medical application, especially on the safety and efficiency of photothermal therapy, is discussed.

4.
Diagnostics (Basel) ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418868

ABSTRACT

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.

5.
Biomolecules ; 10(10)2020 10 15.
Article in English | MEDLINE | ID: mdl-33076409

ABSTRACT

An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIßß3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets' aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells' aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.


Subject(s)
Erythrocytes/pathology , Fibrinogen/isolation & purification , Glycoproteins/isolation & purification , Macromolecular Substances/isolation & purification , Erythrocyte Aggregation/genetics , Erythrocytes/chemistry , Erythrocytes/metabolism , Fibrinogen/genetics , Flow Cytometry , Glycophorins , Glycoproteins/chemistry , Glycoproteins/ultrastructure , Humans , Lasers , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Microfluidics/methods , Optical Tweezers , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology
6.
Biomed Opt Express ; 10(8): 3974-3986, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31452989

ABSTRACT

In this work, we compare the blood aggregation parameters measured in vitro by laser aggregometry and optical trapping techniques in blood samples with the parameters of blood rheology measured in vivo by digital capillaroscopy in the nail bed capillaries of patients suffering from the hypertension and coronary heart disease. We show that the alterations of the parameters measured in vivo and in vitro for patients with different stages of these diseases are interrelated. Good agreement between the results obtained with different techniques, and their applicability for the diagnostics of abnormalities of rheological properties of blood are demonstrated.

7.
Int J Mol Sci ; 17(7)2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27420044

ABSTRACT

Nanodiamonds (ND) have emerged to be a widely-discussed nanomaterial for their applications in biological studies and for medical diagnostics and treatment. The potentials have been successfully demonstrated in cellular and tissue models in vitro. For medical applications, further in vivo studies on various applications become important. One of the most challenging possibilities of ND biomedical application is controllable drug delivery and tracing. That usually assumes ND interaction with the blood system. In this work, we study ND interaction with rat blood and analyze how the ND surface modification and coating can optimize the ND interaction with the blood. It was found that adsorption of a low concentration of ND does not affect the oxygenation state of red blood cells (RBC). The obtained in vivo results are compared to the results of in vitro studies of nanodiamond interaction with rat and human blood and blood components, such as red blood cells and blood plasma. An in vivo animal model shows ND injected in blood attach to the RBC membrane and circulate with blood for more than 30 min; and ND do not stimulate an immune response by measurement of proinflammatory cytokine TNF-α with ND injected into mice via the caudal vein. The results further confirm nanodiamonds' safety in organisms, as well as the possibility of their application without complicating the blood's physiological conditions.


Subject(s)
Erythrocytes/drug effects , Nanodiamonds/toxicity , Animals , Dynamic Light Scattering , Enzyme-Linked Immunosorbent Assay , Erythrocytes/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Nanodiamonds/chemistry , Oxygen/chemistry , Particle Size , Rats , Serum Albumin/chemistry , Serum Albumin/metabolism , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism
8.
J Biomed Opt ; 17(10): 101512, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23223988

ABSTRACT

Nanodiamond has been proven to be biocompatible and proposed for various biomedical applications. Recently, nanometer-sized diamonds have been demonstrated as an effective Raman/fluorescence probe for bio-labeling, as well as, for drug delivery. Bio-labeling/drug delivery can be extended to the human blood system, provided one understands the interaction between nanodiamonds and the blood system. Here, the interaction of nanodiamonds (5 and 100 nm) with human red blood cells (RBC) in vitro is discussed. Measurements have been facilitated using Raman spectroscopy, laser scanning fluorescence spectroscopy, and laser diffractometry (ektacytometry). Data on cell viability and hemolytic analysis are also presented. Results indicate that the nanodiamonds in the studied condition do not cause hemolysis, and the cell viability is not affected. Importantly, the oxygenation/deoxygenation process was not found to be altered when nanodiamonds interacted with the RBC. However, the nanodiamond can affect some RBC properties such as deformability and aggregation in a concentration dependent manner. These results suggest that the nanodiamond can be used as an effective bio-labeling and drug delivery tool in ambient conditions, without complicating the blood's physiological conditions. However, controlling the blood properties including deformability of RBCs and rheological properties of blood is necessary during treatment.


Subject(s)
Erythrocyte Deformability/drug effects , Erythrocytes/drug effects , Nanodiamonds , Oxygen/blood , Cell Survival/drug effects , Erythrocyte Membrane/drug effects , Erythrocytes/chemistry , Erythrocytes/cytology , Hemolysis/drug effects , Humans , Oxygen/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL