Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(24): 11778-11784, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38054731

ABSTRACT

Twisting bilayers of transition metal dichalcogenides gives rise to a moiré potential resulting in flat bands with localized wave functions and enhanced correlation effects. In this work, scanning tunneling microscopy is used to image a WS2 bilayer twisted approximately 3° off the antiparallel alignment. Scanning tunneling spectroscopy reveals localized states in the vicinity of the valence band onset, which is observed to occur first in regions with S-on-S Bernal stacking. In contrast, density functional theory calculations on twisted bilayers that have been relaxed in vacuum predict the highest-lying flat valence band to be localized in regions of AA' stacking. However, agreement with experiment is recovered when the calculations are performed on bilayers in which the atomic displacements from the unrelaxed positions have been reduced, reflecting the influence of the substrate and finite temperature. This demonstrates the delicate interplay of atomic relaxations and the electronic structure of twisted bilayer materials.

2.
Nat Commun ; 14(1): 8421, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110439

ABSTRACT

High-harmonic generation in solids allows probing and controlling electron dynamics in crystals on few femtosecond timescales, paving the way to lightwave electronics. In the spatial domain, recent advances in the real-space interpretation of high-harmonic emission in solids allows imaging the field-free, static, potential of the valence electrons with picometer resolution. The combination of such extreme spatial and temporal resolutions to measure and control strong-field dynamics in solids at the atomic scale is poised to unlock a new frontier of lightwave electronics. Here, we report a strong intensity-dependent anisotropy in the high-harmonic generation from ReS2 that we attribute to angle-dependent interference of currents from the different atoms in the unit cell. Furthermore, we demonstrate how the laser parameters control the relative contribution of these atoms to the high-harmonic emission. Our findings provide an unprecedented atomic perspective on strong-field dynamics in crystals, revealing key factors to consider in the route towards developing efficient harmonic emitters.

3.
ACS Nano ; 17(16): 15883-15892, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37556765

ABSTRACT

The layered transition-metal dichalcogenide material 1T-TaS2 possesses successive phase transitions upon cooling, resulting in strong electron-electron correlation effects and the formation of charge density waves (CDWs). Recently, a dimerized double-layer stacking configuration was shown to form a Peierls-like instability in the electronic structure. To date, no direct evidence for this double-layer stacking configuration using optical techniques has been reported, in particular through Raman spectroscopy. Here, we employ a multiple excitation and polarized Raman spectroscopy to resolve the behavior of phonons and electron-phonon interactions in the commensurate CDW lattice phase of dimerized 1T-TaS2. We observe a distinct behavior from what is predicted for a single layer and probe a richer number of phonon modes that are compatible with the formation of double-layer units (layer dimerization). The multiple-excitation results show a selective coupling of each Raman-active phonon with specific electronic transitions hidden in the optical spectra of 1T-TaS2, suggesting that selectivity in the electron-phonon coupling must also play a role in the CDW order of 1T-TaS2.

4.
Adv Mater ; 35(38): e2207816, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37377064

ABSTRACT

Semiconducting ferroelectric materials with low energy polarization switching offer a platform for next-generation electronics such as ferroelectric field-effect transistors. Recently discovered interfacial ferroelectricity in bilayers of transition metal dichalcogenide films provides an opportunity to combine the potential of semiconducting ferroelectrics with the design flexibility of 2D material devices. Here, local control of ferroelectric domains in a marginally twisted WS2 bilayer is demonstrated with a scanning tunneling microscope at room temperature, and their observed reversible evolution is understood using a string-like model of the domain wall network (DWN). Two characteristic regimes of DWN evolution are identified: (i) elastic bending of partial screw dislocations separating smaller domains with twin stackings due to mutual sliding of monolayers at domain boundaries and (ii) merging of primary domain walls into perfect screw dislocations, which become the seeds for the recovery of the initial domain structure upon reversing electric field. These results open the possibility to achieve full control over atomically thin semiconducting ferroelectric domains using local electric fields, which is a critical step towards their technological use.

5.
Sensors (Basel) ; 22(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35336554

ABSTRACT

We present the design, fabrication, and testing of a drone-mountable gas sensing platform for environmental monitoring applications. An array of graphene-based field-effect transistors in combination with commercial humidity and temperature sensors are used to relay information by wireless communication about the presence of airborne chemicals. We show that the design, based on an ESP32 microcontroller combined with a 32-bit analog-to-digital converter, can be used to achieve an electronic response similar, within a factor of two, to state-of-the-art laboratory monitoring equipment. The sensing platform is then mounted on a drone to conduct field tests, on the ground and in flight. During these tests, we demonstrate a one order of magnitude reduction in environmental noise by reducing contributions from humidity and temperature fluctuations, which are monitored in real-time with a commercial sensor integrated to the sensing platform. The sensing device is controlled by a mobile application and uses LoRaWAN, a low-power, wide-area networking protocol, for real-time data transmission to the cloud, compatible with Internet of Things (IoT) applications.


Subject(s)
Graphite , Mobile Applications , Humidity , Monitoring, Physiologic/methods , Unmanned Aerial Devices
6.
ACS Appl Mater Interfaces ; 13(51): 61751-61757, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34910450

ABSTRACT

Real time, rapid, and accurate detection of chemical warfare agents (CWA) is an ongoing security challenge. Typical detection methods for CWA are adapted from traditional chemistry techniques such as chromatography and mass spectrometry, which lack portability. Here, we address this challenge by evaluating graphene field effect transistors (GFETs) as a sensing platform for sarin gas using both experiment and theory. Experimentally, we measure the sensing response of GFETs when exposed to dimethyl methylphosphonate (DMMP), a less toxic compound used as simulant due to its chemical similarities to sarin. We find low detection limits of 800 ppb, the highest sensitivity reported up to date for this type of sensing platform. In addition to changes in resistance, we implement an in-operando monitor of the GFETs characteristics during and after exposure to the analyte, which gives insights into the graphene-DMMP interactions. Moreover, using theoretical calculations, we show that DMMP and sarin interact similarly with graphene, implying that GFETs should be highly sensitive to detecting sarin. GFETs offer a versatile platform for the development of compact and miniaturized devices that can provide real-time detection of dangerous chemicals in the local environment.

7.
ACS Sens ; 6(12): 4417-4424, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34788995

ABSTRACT

The ability to detect and recognize airborne chemical species is essential to enable applications in security, health, and environmental monitoring. Here, we report a sensing platform based on graphene field-effect transistor (GFET) devices combined with optical illumination for the detection of volatile compounds. We compare the change in resistance of GFET sensors upon exposure to analytes such as ethanol, dimethyl methylphosphonate (DMMP), and water vapors with and without the presence of a local illuminating ultraviolet (UV) light-emitting diode (LED). Our results show that UV illumination acts as a control knob for the electronic transport properties of graphene, increasing the device's response to ethanol, water, and DMMP, up to a factor of 54, and enabling ppb-level detection of DMMP at 800 ppb without chemical functionalization of the graphene layer. The sensing response can be optimized to reveal an analyte-specific interplay between the induced changes in carrier concentration and mobility of the GFET. These findings provide a pathway to enhancing the sensitivity of GFET sensors and a differentiation channel to improve their selectivity.


Subject(s)
Graphite , Lighting , Transistors, Electronic
8.
Sci Rep ; 11(1): 8729, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888755

ABSTRACT

We explore the substrate-dependent charge carrier dynamics of large area graphene films using contact-free non-invasive terahertz spectroscopy. The graphene samples are deposited on seven distinct substrates relevant to semiconductor technologies and flexible/photodetection devices. Using a Drude model for Dirac fermions in graphene and a fitting method based on statistical signal analysis, we extract transport properties such as the charge carrier density and carrier mobility. We find that graphene films supported by substrates with minimal charged impurities exhibit an enhanced carrier mobility, while substrates with a high surface roughness generally lead to a lower transport performance. The smallest amount of doping is observed for graphene placed on the polymer Zeonor, which also has the highest carrier mobility. This work provides valuable guidance in choosing an optimal substrate for graphene to enable applications where high mobility is required.

9.
ACS Omega ; 5(34): 21320-21329, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32905337

ABSTRACT

Environmental monitoring through gas sensors is paramount for the safety and security of industrial workers and for ecological protection. Graphene is among the most promising materials considered for next-generation gas sensing due to its properties such as mechanical strength and flexibility, high surface-to-volume ratio, large conductivity, and low electrical noise. While gas sensors based on graphene devices have already demonstrated high sensitivity, one of the most important figures of merit, selectivity, remains a challenge. In the past few years, however, surface functionalization emerged as a potential route to achieve selectivity. This review surveys the recent advances in the fabrication and characterization of graphene and reduced graphene oxide gas sensors chemically functionalized with aromatic molecules and polymers with the goal of improving selectivity toward specific gases as well as overall sensor performance.

10.
ACS Appl Mater Interfaces ; 12(35): 39764-39771, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32658444

ABSTRACT

Graphene has demonstrated great promise for technological use, yet control over material growth and understanding of how material imperfections affect the performance of devices are challenges that hamper the development of applications. In this work, we reveal new insight into the connections between the performance of the graphene devices as environmental sensors and the microscopic details of the interactions at the sensing surface. We monitor changes in the resistance of the chemical-vapor deposition grown graphene devices as exposed to different concentrations of ethanol. We perform thermal surface treatments after the devices are fabricated, use scanning probe microscopy to visualize their effects down to nanometer scale and correlate them with the measured performance of the device as an ethanol sensor. Our observations are compared to theoretical calculations of charge transfers between molecules and the graphene surface. We find that, although often overlooked, the surface cleanliness after device fabrication is responsible for the device performance and reliability. These results further our understanding of the mechanisms of sensing in graphene-based environmental sensors and pave the way to optimizing such devices, especially for their miniaturization, as with decreasing size of the active zone the potential role of contaminants will rise.

11.
Nanoscale ; 11(46): 22351-22358, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31728463

ABSTRACT

Charge density waves and negative differential resistance are seemingly unconnected physical phenomena. The former is an ordered quantum fluid of electrons, intensely investigated for its relation with superconductivity, while the latter receives much attention for its potential applications in electronics. Here we show that these two phenomena can not only coexist but also that the localized electronic states of the charge density wave are essential to induce negative differential resistance in a transition metal dichalcogenide, 1T-TaS2. Using scanning tunneling microscopy and spectroscopy, we report the observation of negative differential resistance in the commensurate charge density wave state of 1T-TaS2. The observed phenomenon is explained by the interplay of interlayer and intra-layer tunneling with the participation of the atomically localized states of the charge density wave maxima and minima. We demonstrate that lattice defects can locally affect the coupling between the layers and are therefore a mechanism to realize NDR in these materials.

12.
J Vis Exp ; (149)2019 07 05.
Article in English | MEDLINE | ID: mdl-31329181

ABSTRACT

In this work we describe a technique for creating new crystals (van der Waals heterostructures) by stacking distinct ultrathin layered 2D materials. We demonstrate not only lateral control but, importantly, also control over the angular alignment of adjacent layers. The core of the technique is represented by a home-built transfer setup which allows the user to control the position of the individual crystals involved in the transfer. This is achieved with sub-micrometer (translational) and sub-degree (angular) precision. Prior to stacking them together, the isolated crystals are individually manipulated by custom-designed moving stages that are controlled by a programmed software interface. Moreover, since the entire transfer setup is computer controlled, the user can remotely create precise heterostructures without coming into direct contact with the transfer setup, labeling this technique as "hands-free". In addition to presenting the transfer set-up, we also describe two techniques for preparing the crystals that are subsequently stacked.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Crystallization
13.
Proc Natl Acad Sci U S A ; 113(24): 6623-8, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27302949

ABSTRACT

One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. Here we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles' lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together with direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. We further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.

14.
Phys Rev Lett ; 112(3): 036804, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24484160

ABSTRACT

We report the observation of an isolated charged impurity in graphene and present direct evidence of the close connection between the screening properties of a 2D electron system and the influence of the impurity on its electronic environment. Using scanning tunneling microscopy and Landau level spectroscopy, we demonstrate that in the presence of a magnetic field the strength of the impurity can be tuned by controlling the occupation of Landau-level states with a gate voltage. At low occupation the impurity is screened, becoming essentially invisible. Screening diminishes as states are filled until, for fully occupied Landau levels, the unscreened impurity significantly perturbs the spectrum in its vicinity. In this regime we report the first observation of Landau-level splitting into discrete states due to lifting the orbital degeneracy.

15.
Nat Commun ; 4: 1744, 2013.
Article in English | MEDLINE | ID: mdl-23612285

ABSTRACT

Two-dimensional electron systems in the presence of a magnetic field support topologically ordered states, in which the coexistence of an insulating bulk with conducting one-dimensional chiral edge states gives rise to the quantum Hall effect. For systems confined by sharp boundaries, theory predicts a unique edge-bulk correspondence, which is central to proposals of quantum Hall-based topological qubits. However, in conventional semiconductor-based two-dimensional electron systems, these elegant concepts are difficult to realize, because edge-state reconstruction due to soft boundaries destroys the edge-bulk correspondence. Here we use scanning tunnelling microscopy and spectroscopy to follow the spatial evolution of electronic (Landau) levels towards an edge of graphene supported above a graphite substrate. We observe no edge-state reconstruction, in agreement with calculations based on an atomically sharp boundary. Our results single out graphene as a system where the edge structure can be controlled and the edge-bulk correspondence is preserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...