Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3187, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268614

ABSTRACT

Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Carrier Proteins/metabolism , Transcription Factors/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Phosphorylation , Oxidative Stress , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
Elife ; 122023 01 16.
Article in English | MEDLINE | ID: mdl-36645120

ABSTRACT

Measuring the positions and dynamics of proteins in intact tissues or whole animals is key to understanding protein function. However, to date, this is challenging, as the accessibility of large antibodies to dense tissues is often limited, and fluorescent proteins inserted close to a domain of interest may affect protein function. These complications apply in particular to muscle sarcomeres, arguably one of the most protein-dense assemblies in nature, which complicates studying sarcomere morphogenesis at molecular resolution. Here, we introduce a toolbox of nanobodies recognising various domains of the two Drosophila titin homologs, Sallimus and Projectin, as well as the key sarcomeric proteins Obscurin, α-Actinin, and Zasp52. We verified the superior labelling qualities of our nanobodies in muscle tissue as compared to antibodies. By applying our toolbox to larval muscles, we found a gigantic Sallimus isoform stretching more than 2 µm to bridge the sarcomeric I-band, while Projectin covers almost the entire myosin filaments in a polar orientation. Transgenic expression of tagged nanobodies confirmed their high affinity-binding without affecting target protein function. Finally, adding a degradation signal to anti-Sallimus nanobodies suggested that it is difficult to fully degrade Sallimus in mature sarcomeres; however, expression of these nanobodies caused developmental lethality. These results may inspire the generation of similar toolboxes for other large protein complexes in Drosophila or mammals.


Our muscles are not just for lifting weights. They also keep us alive. For example, our heartbeat is powered by the muscles in the heart wall. Just like other organs in the body, muscles are made up of cells called muscle fibres. Each muscle fibre is divided into many smaller units, or 'sarcomeres', which contain specialised proteins that pull on each other to produce muscle contractions. Although the structure of mature muscles is rather well understood, we know much less about how muscles develop or how they are maintained throughout adult life. Understanding this is especially important in the case of the heart, because its muscle cells are not replaced throughout our lives. Instead, the heart muscle cells we are born with are maintained as we age while working continuously. This means that the proteins within the heart muscle sarcomeres are continuously under mechanical stress and may need to be repaired. How this repair might happen is not well understood. Nanobodies are very small versions of antibodies that recognise and bind to specific protein targets. In biological research, they are used as a tool to observe proteins of interest within cells. This is done by labelling nanobodies, for example, with chemical fluorophores or fluorescent proteins; once labelled, the nanobody binds to its target protein, and scientists can monitor its location and behaviour within the cell. Cells, and even flies, can also be genetically manipulated to produce labelled nanobodies themselves, which has the advantage of visualising the dynamic behaviour of the target protein in the living cell or organism. To better study the proteins in muscle cells, scientists from two different research groups developed a nanobody 'toolbox' that specifically targets sarcomere proteins. First, Loreau et al. made a 'library' of labelled nanobodies targeting different sarcomere proteins in Drosophila melanogaster fruit flies. Second, they used this library of nanobodies to locate several sarcomere proteins in the mature sarcomeres of different fly muscles. Third, using flies that had been genetically altered to produce the labelled nanobodies in their muscle cells, Loreau et al. were able to observe the behaviour of the target proteins in the living muscle. Together, these experiments showed that one protein in Drosophila that is similar to the human sarcomere protein titin has a similar size to the human version, whereas a second Drosophila titin-like protein is shorter and located at a different place in the sarcomere. Both of these proteins work together to stabilise muscle fibres, which is also the role of human titin. The nanobodies generated here are a significant contribution to the tools available to study muscle development and maintenance. Loreau et al. hope that they will help reveal how sarcomere proteins like titin are maintained, especially in the heart, and ultimately how the heart muscle manages to continue working throughout our lives.


Subject(s)
Sarcomeres , Single-Domain Antibodies , Animals , Connectin/genetics , Connectin/metabolism , Sarcomeres/metabolism , Drosophila , Single-Domain Antibodies/metabolism , Animals, Genetically Modified , Mammals
3.
Cells Dev ; 168: 203760, 2021 12.
Article in English | MEDLINE | ID: mdl-34863916

ABSTRACT

Muscles generate forces for animal locomotion. The contractile apparatus of muscles is the sarcomere, a highly regular array of large actin and myosin filaments linked by gigantic titin springs. During muscle development many sarcomeres assemble in series into long periodic myofibrils that mechanically connect the attached skeleton elements. Thus, ATP-driven myosin forces can power movement of the skeleton. Here we review muscle and myofibril morphogenesis, with a particular focus on their mechanobiology. We describe recent progress on the molecular structure of sarcomeres and their mechanical connections to the skeleton. We discuss current models predicting how tension coordinates the assembly of key sarcomeric components to periodic myofibrils that then further mature during development. This requires transcriptional feedback mechanisms that may help to coordinate myofibril assembly and maturation states with the transcriptional program. To fuel the varying energy demands of muscles we also discuss the close mechanical interactions of myofibrils with mitochondria and nuclei to optimally support powerful or enduring muscle fibers.


Subject(s)
Myofibrils , Sarcomeres , Animals , Biophysics , Morphogenesis , Myosins
4.
Nat Commun ; 12(1): 2091, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828099

ABSTRACT

Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.


Subject(s)
Mitochondria/metabolism , Morphogenesis/physiology , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Animals , Biomechanical Phenomena , Drosophila , Drosophila Proteins , Drosophila melanogaster , Feedback , Flight, Animal/physiology , Male , Mechanical Phenomena , Mitochondria/ultrastructure , Muscle Development , Muscle, Skeletal/cytology , Myofibrils/ultrastructure , Myogenic Regulatory Factors , Sarcomeres/metabolism , Transcription Factors
5.
Elife ; 102021 01 06.
Article in English | MEDLINE | ID: mdl-33404503

ABSTRACT

Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.


Subject(s)
Drosophila melanogaster/physiology , Gene Expression Regulation , Hippo Signaling Pathway/physiology , Muscle Fibers, Skeletal/physiology , Myofibrils/metabolism , Sarcomeres/genetics , Animals , Drosophila melanogaster/genetics
6.
Elife ; 82019 09 30.
Article in English | MEDLINE | ID: mdl-31566561

ABSTRACT

It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.


Subject(s)
Asymmetric Cell Division/genetics , Body Patterning/genetics , Cell Proliferation/genetics , Larva/genetics , Animals , Cell Differentiation/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Humans , Larva/growth & development , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism
7.
Cell Rep ; 17(5): 1207-1216, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27783936

ABSTRACT

Dietary restriction (DR) is one of the most robust lifespan-extending interventions in animals. The beneficial effects of DR involve a metabolic adaptation toward increased triglyceride usage. The regulatory mechanism and the tissue specificity of this metabolic switch remain unclear. Here, we show that the IRE1/XBP1 endoplasmic reticulum (ER) stress signaling module mediates metabolic adaptation upon DR in flies by promoting triglyceride synthesis and accumulation in enterocytes (ECs) of the Drosophila midgut. Consistently, IRE1/XBP1 function in ECs is required for increased longevity upon DR. We further identify sugarbabe, a Gli-like zinc-finger transcription factor, as a key mediator of the IRE1/XBP1-regulated induction of de novo lipogenesis in ECs. Overexpression of sugarbabe rescues metabolic and lifespan phenotypes of IRE1 loss-of-function conditions. Our study highlights the critical role of metabolic adaptation of the intestinal epithelium for DR-induced lifespan extension and explores the IRE1/XBP1 signaling pathway regulating this adaptation and influencing lifespan.


Subject(s)
Caloric Restriction , Intestinal Mucosa/metabolism , Longevity/physiology , Triglycerides/metabolism , Animals , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Endoribonucleases/metabolism , Enterocytes/metabolism , Homeostasis , Starvation/metabolism , Transcription Factors/metabolism
8.
PLoS Comput Biol ; 11(5): e1004256, 2015 May.
Article in English | MEDLINE | ID: mdl-25946651

ABSTRACT

The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products ('di-chromatic'), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.


Subject(s)
Calcium/chemistry , Computational Biology/methods , Keratinocytes/cytology , Stem Cells/cytology , Cell Differentiation , Cluster Analysis , Epidermal Cells , Gene Expression Profiling , Humans , Models, Statistical , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Protein Interaction Mapping , Signal Transduction , Software , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
9.
Cell Stem Cell ; 13(6): 745-53, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24120744

ABSTRACT

Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFß and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.


Subject(s)
Circadian Rhythm/physiology , Epidermal Cells , Stem Cells/cytology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Calcium/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cells, Cultured , Circadian Rhythm/drug effects , Humans , Infant, Newborn , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Stem Cells/drug effects , Stem Cells/metabolism , Time Factors , Transforming Growth Factor beta/pharmacology
10.
Cell Stem Cell ; 11(1): 16-21, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22770239

ABSTRACT

Polycomb group proteins (PcGs) generate chromatin-modifying complexes that regulate gene expression. PcGs are categorized into two major groups, polycomb repressive complex 1 (PRC1) and 2 (PRC2), which have classically been thought to function together. Here we discuss recent data challenging this model indicating that the distinct subunit composition of PRC1 confers specific and nonoverlapping functions in embryonic and adult stem cells.


Subject(s)
Repressor Proteins/metabolism , Stem Cells/metabolism , Adult Stem Cells/metabolism , Animals , Embryonic Stem Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Multiprotein Complexes/metabolism , Polycomb-Group Proteins
11.
Cell Stem Cell ; 9(3): 233-46, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21885019

ABSTRACT

Human epidermal stem cells transit from a slow cycling to an actively proliferating state to contribute to homeostasis. Both stem cell states differ in their cell cycle profiles but must remain guarded from differentiation and senescence. Here we show that Cbx4, a Polycomb Repressive Complex 1 (PRC1)-associated protein, maintains human epidermal stem cells as slow-cycling and undifferentiated, while protecting them from senescence. Interestingly, abrogating the polycomb activity of Cbx4 impairs its antisenescent function without affecting stem cell differentiation, indicating that differentiation and senescence are independent processes in human epidermis. Conversely, Cbx4 inhibits stem cell activation and differentiation through its SUMO ligase activity. Global transcriptome and chromatin occupancy analyses indicate that Cbx4 regulates modulators of epidermal homeostasis and represses factors such as Ezh2, Dnmt1, and Bmi1 to prevent the active stem cell state. Our results suggest that distinct Polycomb complexes balance epidermal stem cell dormancy and activation, while continually preventing senescence and differentiation.


Subject(s)
Adult Stem Cells/metabolism , Cell Proliferation , Keratinocytes/metabolism , Repressor Proteins/metabolism , SUMO-1 Protein/metabolism , Adult , Adult Stem Cells/pathology , Cell Differentiation/genetics , Cells, Cultured , Cellular Senescence/genetics , Chromatin Assembly and Disassembly , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA-Binding Proteins/metabolism , Enhancer of Zeste Homolog 2 Protein , Epidermis/pathology , Foreskin/pathology , Gene Expression Profiling , Humans , Infant, Newborn , Keratinocytes/pathology , Ligases , Male , Mutagenesis, Site-Directed , Nuclear Proteins/metabolism , Polycomb Repressive Complex 1 , Polycomb Repressive Complex 2 , Polycomb-Group Proteins , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/genetics , Repressor Proteins/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...