Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 85: 117274, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37031566

ABSTRACT

Reactive oxygen species (ROS) are a heterogeneous group of highly reactive ions and molecules derived from molecular oxygen (O2) which can cause DNA damage and lead to skin cancer. NADPH oxidase 1 (Nox1) is a major producer of ROS in the skin upon exposure to ultraviolet light. Functionally, Nox1 forms a holoenzyme complex that generates two superoxide molecules and reduces NADPH. The signaling activation occurs when the organizer subunit Noxo1 translocates to the plasma membrane bringing a cytochrome p450, through interaction with Cyba. We propose to design inhibitors that prevent Cyba-Noxo1 binding as a topical application to reduce UV-generated ROS in human skin cells. Design started from an apocynin backbone structure to generate a small molecule to serve as an anchor point. The initial compound was then modified by addition of a polyethylene glycol linked biotin. Both inhibitors were found to be non-toxic in human keratinocyte cells. Further in vitro experiments using isothermal calorimetric binding quantification showed the modified biotinylated compound bound Noxo1 peptide with a KD of 2 nM. Both using isothermal calorimetric binding and MALDI (TOF) MS showed that binding of a Cyba peptide to Noxo1 was blocked. In vivo experiments were performed using donated skin explants with topical application of the two inhibitors. Experiments show that ultraviolet light exposure of with the lead compound was able to reduce the amount of cyclobutene pyrimidine dimers in DNA, a molecule known to lead to carcinogenesis. Further synthesis showed that the polyethylene glycol but not the biotin was essential for inhibition.


Subject(s)
Biotin , NADPH Oxidases , Humans , Reactive Oxygen Species/metabolism , Biotin/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Superoxides/metabolism , NADPH Oxidase 1/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism
2.
Int J Oral Sci ; 11(3): 26, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31451683

ABSTRACT

Stem cells are of great interest to the scientific community due to their potential role in regenerative and rejuvenative medicine. However, their role in the aging process and carcinogenesis remains unclear. Because DNA replication in stem cells may contribute to the background mutation rate and thereby to cancer, reducing proliferation and establishing a relatively quiescent stem cell compartment has been hypothesized to limit DNA replication-associated mutagenesis. On the other hand, as the main function of stem cells is to provide daughter cells to build and maintain tissues, the idea of a quiescent stem cell compartment appears counterintuitive. Intriguing observations in mice have led to the idea of separated stem cell compartments that consist of cells with different proliferative activity. Some epithelia of short-lived rodents appear to lack quiescent stem cells. Comparing stem cells of different species and different organs (comparative stem cell biology) may allow us to elucidate the evolutionary pressures such as the balance between cancer and longevity that govern stem cell biology (evolutionary stem cell biology). The oral mucosa and its stem cells are an exciting model system to explore the characteristics of quiescent stem cells that have eluded biologists for decades.


Subject(s)
Carcinoma, Squamous Cell/genetics , Mouth Mucosa , Stem Cells/cytology , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Epithelium/metabolism , Epithelium/physiology , Mice , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...