Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 179: 156630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696882

ABSTRACT

OBJECTIVE: Our study aimed to revaluate the significant data from meta-analyses on genetic variations in immune mediators and the risk of prostate cancer (PCa) by Bayesian approaches. METHODS: We performed a search on the literature before September 5th, 2023, for meta-analytic studies on polymorphisms in immune mediator genes and the risk of PCa. Two Bayesian approaches were used to assess the level of noteworthiness in the meta-analytic data: the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-6. The quality evaluation of studies was performed with the Venice criteria. Gene-gene and protein-protein networks were designed for the genes and products enrolled in the results. RESULTS: As results, 18 meta-analyses on 17 polymorphisms in several immune mediator genes were included (IL1B rs16944/rs1143627, IL4 rs2243250/rs2227284/rs2070874, IL6 1800795/rs1800796/rs1800797, IL8 rs4073, IL10 rs1800896/rs1800871/rs1800872, IL18 rs1946518, COX2 rs2745557, TNFA rs361525 and PTGS2 rs20417/689470). The Bayesian calculations showed the rs1143627 and the rs1946518 polymorphisms in IL1B and IL18 genes, respectively, were noteworthy. The Venice criteria showed that only four studies received the highest level of evidence. The gene-gene and protein-protein networks reinforced the findings on IL1B and IL18 genes. CONCLUSION: In conclusion, this current Bayesian revaluation showed that the rs1143627 and the rs1946518 polymorphisms in the IL1B and IL18 genes, respectively, were noteworthy biomarker candidates for PCa risk.


Subject(s)
Bayes Theorem , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Prostatic Neoplasms , Prostatic Neoplasms/genetics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Interleukin-1beta/genetics , Genetic Variation
2.
Gene ; 869: 147392, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36966980

ABSTRACT

Hepatocellular carcinoma (HCC) is considered as the second cause of cancer-related deaths worldwide. Genetic variations are associated with HCC risk, an issue that has been the subject of several meta-analyses. However, meta-analyses have an important limitation on the likelihood of false positive data. Henceforth, this study aimed to assess the level of noteworthiness in the meta-analyses by means of a Bayesian approach. A systematic search was performed for meta-analyses with associations between gene polymorphisms and HCC. The calculations for the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) were performed to assess the noteworthiness with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-5. The quality of studies was evaluated by the Venice criteria. As additional analyses, the gene-gene and protein-protein networks were designed for these genes and products. As results, we found 33 meta-analytic studies on 45 polymorphisms occurring in 35 genes. A total of 1,280 values for FPRP and BFDP were obtained. Seventy-five for FPRP (5.86%) and 95 for BFDP (14.79%) were noteworthy. In conclusion, the polymorphisms in CCND1, CTLA4, EGF, IL6, IL12A, KIF1B, MDM2, MICA, miR-499, MTHFR, PNPLA3, STAT4, TM6SF2, and XPD genes were considered as noteworthy biomarkers for HCC risk.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Bayes Theorem , Liver Neoplasms/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...