Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571776

ABSTRACT

The structural collapse of a street lighting pole represents an aspect that is often underestimated and unpredictable, but of relevant importance for the safety of people and things. These events are complex to evaluate since several sources of damage are involved. In addition, traditional inspection methods are ineffective, do not correctly quantify the residual life of poles, and are inefficient, requiring enormous costs associated with the vastness of elements to be investigated. An advantageous alternative is to adopt a distributed type of Structural Health Monitoring (SHM) technique based on the Internet of Things (IoT). This paper proposes the design of a low-cost system, which is also easy to integrate in current infrastructures, for monitoring the structural behavior of street lighting poles in Smart Cities. At the same time, this device collects previous structural information and offers some secondary functionalities related to its application, such as meteorological information. Furthermore, this paper intends to lay the foundations for the development of a method that is able to avoid the collapse of the poles. Specifically, the implementation phase is described in the aspects concerning low-cost devices and sensors for data acquisition and transmission and the strategies of information technologies (ITs), such as Cloud/Edge approaches, for storing, processing and presenting the achieved measurements. Finally, an experimental evaluation of the metrological performance of the sensing features of this system is reported. The main results highlight that the employment of low-cost equipment and open-source software has a double implication. On one hand, they entail advantages such as limited costs and flexibility to accommodate the specific necessities of the interested user. On the other hand, the used sensors require an indispensable metrological evaluation of their performance due to encountered issues relating to calibration, reliability and uncertainty.

2.
Sensors (Basel) ; 22(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35214459

ABSTRACT

In the field of Smart Cities, especially for Smart Street Lighting and Smart Mobility, the use of low-cost devices is considered an advantageous solution due to their easy availability, cost reduction and, consequently, technological and methodological development. However, this type of transducers shows many critical issues, e.g., in metrological and reliability terms, which can significantly compromise their functionality and safety. Such issue has a large relevance when temperature and humidity are cause of a rapid aging of sensors. The aim of this work is to evaluate the effects of accelerated aging in extreme climatic conditions on the performance of a control system, based on a low-cost ultrasonic distance sensor, for public-lighting management in Smart Cities. The presented architecture allows for the detection of vehicles, pedestrians and small animals and contains a dedicated algorithm, developed in an Edge/Cloud environment, that is able to display the acquired measurements to users connected on the web. The obtained results highlight that the effect of accelerated aging is to significantly reduce the linearity of the calibration curve of the sensor and, moreover, to exponentially increase the number of outliers and invalid measurements. These limitations can be overcome by developing an appropriate self-calibration strategy.


Subject(s)
Lighting , Ultrasonics , Aging , Animals , Cities , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL