Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Phycol ; 56(3): 630-648, 2020 06.
Article in English | MEDLINE | ID: mdl-32068883

ABSTRACT

The class Eustigmatophyceae includes mostly coccoid, freshwater algae, although some genera are common in terrestrial habitats and two are primarily marine. The formal classification of the class, developed decades ago, does not fit the diversity and phylogeny of the group as presently known and is in urgent need of revision. This study concerns a clade informally known as the Pseudellipsoidion group of the order Eustigmatales, which was initially known to comprise seven strains with oval to ellipsoidal cells, some bearing a stipe. We examined those strains as well as 10 new ones and obtained 18S rDNA and rbcL gene sequences. The results from phylogenetic analyses of the sequence data were integrated with morphological data of vegetative and motile cells. Monophyly of the Pseudellipsoidion group is supported in both 18S rDNA and rbcL trees. The group is formalized as the new family Neomonodaceae comprising, in addition to Pseudellipsoidion, three newly erected genera. By establishing Neomonodus gen. nov. (with type species Neomonodus ovalis comb. nov.), we finally resolve the intricate taxonomic history of a species originally described as Monodus ovalis and later moved to the genera Characiopsis and Pseudocharaciopsis. Characiopsiella gen. nov. (with the type species Characiopsiella minima comb. nov.) and Munda gen. nov. (with the type species Munda aquilonaris) are established to accommodate additional representatives of the polyphyletic genus Characiopsis. A morphological feature common to all examined Neomonodaceae is the absence of a pyrenoid in the chloroplasts, which discriminates them from other morphologically similar yet unrelated eustigmatophytes (including other Characiopsis-like species).


Subject(s)
RNA, Ribosomal, 16S , Chrysophyta/genetics , DNA, Ribosomal , Phylogeny , Sequence Analysis, DNA
2.
Mol Phylogenet Evol ; 133: 236-255, 2019 04.
Article in English | MEDLINE | ID: mdl-30576758

ABSTRACT

Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.


Subject(s)
Biodiversity , Phylogeny , Soil , Streptophyta/classification , Chloroplasts , DNA, Intergenic/genetics , Forests , Geography , Nucleic Acid Conformation
3.
Protist ; 169(3): 406-431, 2018 07.
Article in English | MEDLINE | ID: mdl-29860113

ABSTRACT

Two new genera (Streptosarcina and Streptofilum) and three new species (Streptosarcina arenaria, S. costaricana and Streptofilum capillatum) of streptophyte algae were detected in cultures isolated from terrestrial habitats of Europe and Central America and described using an integrative approach. Additionally, a strain isolated from soil in North America was identified as Hormidiella parvula and proposed as an epitype of this species. The molecular phylogeny based on 18S rRNA and rbcL genes, secondary structure of ITS-2, as well as the morphology of vegetative and reproductive stages, cell ultrastructure, ecology and distribution of the investigated strains were assessed. The new genus Streptosarcina forms a sister lineage to the genus Hormidiella (Klebsormidiophyceae). Streptosarcina is characterized by packet-like (sarcinoid) and filamentous thalli with true branching and a cell organization typical for Klebsormidiophyceae. Streptofilum forms a separate lineage within Streptophyta. This genus represents an easily disintegrating filamentous alga which exhibits a cell coverage of unique structure: layers of submicroscopic scales of piliform shape covering the plasmalemma and exfoliate inside the mucilage envelope surrounding cells. The implications of the discovery of the new taxa for understanding evolutionary tendencies in the Streptophyta, a group of great evolutionary interest, are discussed.


Subject(s)
Ecosystem , Phylogeny , Streptophyta/classification , Streptophyta/genetics , Central America , Cluster Analysis , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Europe , Microscopy , Microscopy, Electron, Transmission , North America , Nucleic Acid Conformation , RNA, Ribosomal, 18S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA , Soil Microbiology , Streptophyta/ultrastructure
4.
Toxicon ; 150: 66-73, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29772212

ABSTRACT

Benthic cyanobacteria recognized as producers of natural products, including cyanotoxins, have been neglected for systematic toxicological studies. Thus, we have performed a broad study investigating cyanotoxin potential of 311 non-planktic nostocacean representatives combining molecular and chemical analyses. Out of these, a single strain Nostoc sp. Treb K1/5, was identified as a new microcystin producer. Microcystins [Asp3]MC-YR, [Asp3]MC-FR, [Asp3]MC-HtyR and Ala-Leu/Ile-Asp-Arg-Adda-Glu-Mdha are reported for the first time from the genus Nostoc. All the studied strains were also analyzed for the occurrence of nodularins, cylindrospermopsin and (homo)anatoxin-a, yet no novel producer has been discovered. Our findings indicate rare occurrence of the common cyanotoxins in non-planktic nostocaceae which is in contrast with frequent reports of cyanotoxin producers among phylogenetically closely related planktic cyanobacteria.


Subject(s)
Microcystins/metabolism , Nostoc/metabolism , Microcystins/chemistry , Nostoc/genetics , Phylogeny
5.
Genes (Basel) ; 8(11)2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149093

ABSTRACT

Research in algae usually focuses on the description and characterization of morpho-and phenotype as a result of adaptation to a particular habitat and its conditions. To better understand the evolution of lineages we characterized responses of filamentous streptophyte green algae of the genera Klebsormidium and Zygnema, and of a land plant-the moss Physcomitrellapatens-to genotoxic stress that might be relevant to their environment. We studied the induction and repair of DNA double strand breaks (DSBs) elicited by the radiomimetic drug bleomycin, DNA single strand breaks (SSB) as consequence of base modification by the alkylation agent methyl methanesulfonate (MMS) and of ultra violet (UV)-induced photo-dimers, because the mode of action of these three genotoxic agents is well understood. We show that the Klebsormidium and Physcomitrella are similarly sensitive to introduced DNA lesions and have similar rates of DSBs repair. In contrast, less DNA damage and higher repair rate of DSBs was detected in Zygnema, suggesting different mechanisms of maintaining genome integrity in response to genotoxic stress. Nevertheless, contrary to fewer detected lesions is Zygnema more sensitive to genotoxic treatment than Klebsormidium and Physcomitrella.

7.
Chromosoma ; 125(3): 437-51, 2016 06.
Article in English | MEDLINE | ID: mdl-26596989

ABSTRACT

Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.


Subject(s)
Amino Acid Motifs/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomere/genetics , Volvocida/genetics , Base Sequence , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Telomere Shortening/genetics
8.
J Phycol ; 50(1): 187-202, 2014 Feb.
Article in English | MEDLINE | ID: mdl-26988018

ABSTRACT

Twenty-six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S-23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.

9.
PLoS One ; 8(10): e75989, 2013.
Article in English | MEDLINE | ID: mdl-24146804

ABSTRACT

To date, only morphological and anatomical descriptions of microwhip scorpions (Arachnida: Palpigradi) have been published. This very rare group is enigmatic not only in its relationships to other arachnids, but especially due to the fact that these animals dwell only underground (in caves, soil, and interstitial spaces). We observed the curious feeding habit of the microwhip scorpion Eukoenenia spelaea over the course of one year in Ardovská Cave, located in Slovakia's Karst region. We chose histology as our methodology in studying 17 specimens and based it upon Masson's triple staining, fluorescent light and confocal microscopy. Single-celled cyanobacteria (blue-green algae) were conspicuously predominant in the gut of all studied palpigrades. Digestibility of the consumed cyanobacteria was supported by the presence of guanine crystals, glycogen deposits and haemocytes inside the palpigrade body. Cyanobacteria, the oldest cellular organisms on Earth, are very resistant to severe conditions in caves, including even darkness. Therefore, the cyanobacteria are able to survive in dark caves as nearly heterotrophic organisms and are consumed by cave palpigrades. Such feeding habit is extraordinary within the almost wholly predacious orders of the class Arachnida, and particularly so due to the type of food observed.


Subject(s)
Cyanobacteria/physiology , Feeding Behavior/physiology , Gastrointestinal Tract/physiology , Heterotrophic Processes/physiology , Scorpions/physiology , Animals , Caves/microbiology , Darkness , Diet , Female , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/ultrastructure , Glycogen/biosynthesis , Guanine/biosynthesis , Male , Microscopy, Electron, Scanning , Scorpions/anatomy & histology , Scorpions/ultrastructure , Slovakia
10.
FEBS Lett ; 587(6): 743-8, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23395610

ABSTRACT

Telomerase maintains the ends of eukaryotic chromosomes, and its activity is an important parameter correlating with the proliferative capacity of cells. We have investigated cell cycle-specific changes in telomerase activity using cultures of Desmodesmus quadricauda, a model alga naturally synchronized by light/dark entrainment. A quantitative telomerase assay revealed high activity in algal cultures, with slight changes during the light period. Significantly increased telomerase activity was observed at the end of the dark phase, when cell division was complete. In contrast to other models, a natural separation between nuclear and cellular division typical for the cell cycle in D. quadricauda made this observation possible.


Subject(s)
Chlorophyta/enzymology , Plant Proteins/metabolism , Telomerase/metabolism , Telomere/metabolism , Biological Assay , Cell Division , Cells, Cultured , Chlorophyta/cytology , Chlorophyta/radiation effects , Kinetics , Light , Photoperiod , Plant Proteins/isolation & purification , Telomerase/isolation & purification , Telomere/radiation effects
11.
Genome Biol Evol ; 5(3): 468-83, 2013.
Article in English | MEDLINE | ID: mdl-23395982

ABSTRACT

Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.


Subject(s)
Eukaryota/classification , Eukaryota/genetics , Evolution, Molecular , Genetic Variation , Phylogeny , Telomere/genetics , Base Sequence , DNA, Algal/genetics , Eukaryota/metabolism , Genome , Humans , Molecular Sequence Data , Tandem Repeat Sequences , Telomere/metabolism
12.
J Phycol ; 49(6): 1167-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-27007635

ABSTRACT

Ninety-two strains of Microcoleus vaginatus (=nomenclatural-type species of the genus Microcoleus Desmazières ex Gomont) and Phormidium autumnale Trevisan ex Gomont from a wide diversity of regions and biotopes were examined using a combination of morphological and molecular methods. Phylogenies based on the 16S rDNA and 16S-23S ITS (partial) demonstrated that the 92 strains, together with a number of strains in GenBank, were members of a highly supported monophyletic clade of strains (Bayesian posterior probability = 1.0) distant from the species-cluster containing the generitype of Phormidium. Similarity of the 16S rRNA gene exceeded 95.5% among all members of the Microcoleus clade, but was less than 95% between any Microcoleus strains and species outside of the clade (e.g., Phormidium sensu stricto). These findings, which are in agreement with earlier studies on these taxa, necessitate the revision of Microcoleus to include P. autumnale. Furthermore, the cluster of Phormidium species in the P. autumnale group (known as Group VII) must be moved into Microcoleus as well, and these nomenclatural transfers are included in this study. The main diacritical characters defining Microcoleus are related to the cytomorphology of trichomes, including: narrowed trichome ends, calyptra, cells shorter than wide up to more or less isodiametric, and facultative presence of sheaths. The majority of species are 4-10 µm in diameter. The possession of multiple trichomes in a common sheath is present facultatively in many but not all species.

13.
Chem Res Toxicol ; 25(6): 1203-11, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22551534

ABSTRACT

Puwainaphycins F and G, moderate cytotoxins, which cause necrotic cell death to mammalian cells, were isolated from the soil cyanobacterium Cylindrospermum alatosporum C24/89. Both compounds have been shown to be cyclic decapeptides containing unusual ß-amino fatty acid (2-hydroxy-3-amino-4methyl tetradecanoic acid). Described variants differ in the substitution of threonine by glutamine in the fourth position. Their structures differ from the known puwainaphycins in five amino acids positions as well as in the ß-amino fatty acid unit. The rapid interaction of these compounds with the plasma membrane of the mammal cell leads to an elevation of the concentration of intracellular Ca(2+), with kinetics comparable to the well-established calcium ionophore ionomycin. Subsequently, the induction of tyrosine phosphorylation was observed to be followed by the unique transformation of the actin cytoskeleton into ring structures around the nuclei. All of these alterations in the cellular morphology and physiology result in necrotic cell death after ca. 10 h. The IC(50) values were determined to be 2.2 µM for both puwainaphycins. The present data demonstrate the interaction of cyanobacterial secondary metabolites with eukaryotic plasma membrane and point out the possible toxic effects of cyanobacterial lipopeptides for humans.


Subject(s)
Actins/metabolism , Antineoplastic Agents/pharmacology , Cell Membrane Permeability/drug effects , Cyanobacteria/chemistry , Lipopeptides/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Molecular Structure , Structure-Activity Relationship
14.
Genome Biol Evol ; 4(3): 248-64, 2012.
Article in English | MEDLINE | ID: mdl-22247428

ABSTRACT

Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.


Subject(s)
Chlorophyta/genetics , Evolution, Molecular , Telomere/genetics , Volvocida/genetics
15.
Toxicon ; 57(1): 76-83, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20946912

ABSTRACT

Heterocytous cyanobacteria from various habitats were screened for toxicity to brine shrimp Artemia salina and the murine lymphoblastic cell line Sp/2 in order to compare these two testing models for evaluation of risk posed by cyanobacteria to human health. Methanol extracts of biomass and cultivation media were tested for toxicity and selected extracts were fractionated to determine the active fraction. We found a significant toxic effect to A. salina and to Sp/2 cells in 5.2% and 31% of studied extracts, respectively. Only 8.6% of the tested strains were highly toxic to both A. salina and the Sp/2 cell line, and only two of the tested strains were toxic to A. salina and not to the murine cell line. Therefore, it is likely that the toxic effect of cyanobacterial secondary metabolites mostly targets basal metabolic pathways present in mammal cells and so is not manifested in A. salina. We conclude that it is insufficient to monitor cytotoxicity of cyanobacteria using only the brine shrimp bioassay as was usual in the past, since cytotoxicity is a more frequent feature in cyanobacteria in comparison with toxicity to A. salina. A. salina toxicity test should not be used when estimating the possible health risk for humans. We suggest that in vitro mammal cells be used for these purposes.


Subject(s)
Artemia/drug effects , Bacterial Toxins/toxicity , Cyanobacteria/metabolism , Lymphocytes/drug effects , Marine Toxins/toxicity , Microcystins/toxicity , Animals , Cell Line , Cell Survival/drug effects , Cyanobacteria/chemistry , Cyanobacteria Toxins , Larva/drug effects , Larva/growth & development , Longevity/drug effects , Lymphocytes/metabolism , Mice , Reproducibility of Results , Risk Assessment/methods , Toxicity Tests
16.
Environ Toxicol ; 26(4): 345-58, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20082446

ABSTRACT

Extensive selection of cyanobacterial strains (82 isolates) belonging to the genus Nostoc, isolated from different climatic regions and habitats, were screened for both their secondary metabolite content and their cytotoxic effects to mammalian cell lines. The overall occurrence of cytotoxicity was found to be 33%, which corresponds with previously published data. However, the frequency differs significantly among strains, which originate from different climatic regions and microsites (particular localities). A large fraction of intensely cytotoxic strains were found among symbiotic strains (60%) and temperate and continental climatic isolates (45%); compared with the less significant incidences in strains originating from cold regions (36%), deserts (14%), and tropical habitats (9%). The cytotoxic strains were not randomly distributed; microsites that clearly had a higher occurrence of cytotoxicity were observed. Apparently, certain natural conditions lead to the selection of cytotoxic strains, resulting in a high cytotoxicity occurrence, and vice versa. Moreover, in strains isolated from a particular microsite, the cytotoxic effects were caused by different compounds. This result supports our hypothesis for the environmental dependence of cytotoxicity. It also contradicts the hypothesis that clonality and lateral gene transfer could be the reason for this phenomenon. Enormous variability in the secondary metabolites was detected within the studied Nostoc extracts. According to their molecular masses, only 26% of these corresponded to any known structures; thus, pointing to the high potential for the use of many terrestrial cyanobacteria in both pharmacology and biotechnology.


Subject(s)
Climate , Cytotoxins/metabolism , Nostoc/metabolism , Ecosystem , Nostoc/classification , Nostoc/genetics , Phylogeny , Soil Microbiology , Species Specificity , Symbiosis
17.
J Enzyme Inhib Med Chem ; 25(3): 414-20, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20233015

ABSTRACT

Nostotrebin 6, a new polyphenolic compound with a fully substituted 2,2'-bis(cyclopent-4-en-1,3-dione) skeleton, was isolated from a methanolic extract of the cyanobacterial strain Nostoc sp. str. Lukesová 27/97. The structure of this compound was determined using X-ray crystallography and further supported by NMR, IR spectroscopy, and MS. Nostotrebin 6 is an S-parabolic I-parabolic noncompetitive inhibitor of acetylcholinesterase (IC(50) = 5.5 microM) and an S-parabolic I-parabolic mixed inhibitor of butyrylcholinesterase (IC(50) = 6.1-7.5 microM). The inhibitory potency of nostotrebin 6 was compared with that of tacrine and galanthamine.


Subject(s)
Cholinesterase Inhibitors/chemistry , Cyclopentanes/pharmacology , Nostoc/chemistry , Acetylcholinesterase/drug effects , Animals , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Cyclopentanes/chemistry , Cyclopentanes/isolation & purification , Humans , Inhibitory Concentration 50 , Molecular Structure
18.
J Enzyme Inhib Med Chem ; 24(2): 531-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18951237

ABSTRACT

Fifty-four cyanobacterial strains of the genus Nostoc from different habitats were screened for acetylcholinesterase inhibitory activity. Water-methanolic extracts from freeze-dried biomasses were tested for inhibitory activity using Ellman's spectrophotometric method. Acetylcholinesterase inhibitory activity higher than 90% was found in the crude extracts of Nostoc sp. str. Lukesova 27/97 and Nostoc ellipsosporum Rabenh. str. Lukesova 51/91. Extracts from Nostoc ellipsosporum str. Lukesova 52/91 and Nostoc linckia f. muscorum (Ag.) Elenk. str. Gromov, 1988, CALU-980 inhibited AChE activity by 84.9% and 65.3% respectively. Moderate AChE inhibitory activity (29.1-37.5%) was found in extracts of Nostoc linckia Roth. str. Gromov, 1962/10, CALU-129, Nostoc muscorum Ag. str. Lukesova 127/97, Nostoc sp. str. Lhotsky, CALU-327 and Nostoc sp. str. Gromov, CALU-998. Extracts from another seven strains showed weak anti-AChE activities. The active component responsible for acetylcholinesterase inhibition was identified in a crude extract of Nostoc sp. str. Lukesova 27/97 using HPLC and found to occur in one single peak.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Nostoc/chemistry , Cyanobacteria/chemistry , Cyanobacteria/metabolism , Nostoc/classification , Nostoc/metabolism
19.
Cryo Letters ; 29(1): 21-6, 2008.
Article in English | MEDLINE | ID: mdl-18392285

ABSTRACT

Twenty-seven strains of soil algae isolated from highly diverse provenances and habitats were assessed for their capacity to withstand cryopreservation using encapsulation/dehydration. Survival was assessed following the release of algae from alginate beads treated with sodium hexametaphosphate and regrowth was assessed using NAJA Image Analysis. Regrowth occurred in 19 strains, with > 50% survival being observed in 15. Algal tolerance to osmotic dehydration and evaporative desiccation was critical to the success of the method. Recovery in five out of the remaining eight recalcitrant strains was enhanced by substituting sorbitol for the osmotic pretreatment or by combining encapsulation with two-step controlled rate cooling.


Subject(s)
Cryopreservation/methods , Eukaryota , Soil Microbiology
20.
Int J Syst Evol Microbiol ; 58(Pt 3): 553-64, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18319454

ABSTRACT

Many cyanobacteria commonly identified as belonging to the genus Nostoc are well-known cyanobionts (symbionts) of a wide variety of plants and fungi. They form symbioses with bryophytes, pteridophytes, gymnosperms and angiosperms that are considerably different in the type of reciprocal interaction between the host and the cyanobiont. The phylogenetic and taxonomic relationships among cyanobionts isolated from different hosts and Nostoc strains isolated from free-living conditions are still not well understood. We compared phylogeny and morphology of symbiotic cyanobacteria originating from different host plants (genera Gunnera, Azolla, Cycas, Dioon, Encephalartos, Macrozamia and Anthoceros) with free-living Nostoc isolates originating from different habitats. After preliminary clustering with ARDRA (amplified rDNA restriction analysis), phylogeny was reconstructed on the basis of 16S rRNA gene sequences and compared with morphological characterization, obtaining several supported clusters. Two main Nostoc clusters harboured almost all cyanobionts of Gunnera, Anthoceros and of several cycads, together with free-living strains of the species Nostoc muscorum, Nostoc calcicola, Nostoc edaphicum, Nostoc ellipsosporum and strains related to Nostoc commune. We suggest that the frequent occurrence of symbiotic strains within these clusters is explained by the intensive hormogonia production that was observed in many of the strains studied. However, no evidence for discrimination between symbiotic and free-living strains, either by molecular or morphological approaches, could be found. Sequences of Azolla cyanobiont filaments, taken directly from leaf cavities, clustered tightly with sequences from the planktic cyanobacterium Cylindrospermopsis raciborskii, from the benthic Anabaena cylindrica 133 and from Anabaena oscillarioides HINDAK 1984/43, with high bootstrap values. The phylogenetic analysis showed that two distinct patterns of evolution of symbiotic behaviour might exist for the nostocacean cyanobacteria, one leading to symbioses of Nostoc species with a wide variety of plants, the other leading to the association of a unique cyanobacterial type with the water fern Azolla.


Subject(s)
Evolution, Molecular , Nostoc/classification , Nostoc/genetics , Plants/classification , Plants/microbiology , Symbiosis , Bacterial Typing Techniques , Bryophyta/microbiology , Cycadopsida/microbiology , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Fatty Acids/analysis , Ferns/microbiology , Genes, rRNA , Magnoliopsida/microbiology , Molecular Sequence Data , Nostoc/growth & development , Nostoc muscorum/genetics , Nostoc muscorum/growth & development , Phylogeny , RNA, Ribosomal, 16S/genetics , Restriction Mapping , Sequence Analysis, DNA , Symbiosis/genetics , Zamiaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...