Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475514

ABSTRACT

Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities of main and alternative host plants can affect genetic diversity within and between the pathogen populations isolated from those plants. Strains of Gram-positive bacterium Curtobacterium flaccumfaciens were identified as being causal agents of bacterial spot and wilt diseases on leguminous plants, and other crop and weed plants, collected in different regions of Russia. Their biochemical properties and susceptibility to copper compounds have been found to be relatively uniform. According to conventional PCR assays, all of the isolates studied were categorised as pathovar Curtobacterim flaccumfaciens pv. flaccumfaciens, a pathogen of legumes. However, the strains demonstrated a substantial diversity in terms of virulence on several tested host plants and different phylogenetic relationships were revealed by BOX-PCR and alanine synthase gene (alaS) sequencing.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139119

ABSTRACT

Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.


Subject(s)
Bacteriophages , Klebsiella Infections , Humans , Klebsiella , Klebsiella pneumoniae/metabolism , Bacteriophages/physiology , Klebsiella Infections/microbiology , Polysaccharides, Bacterial/metabolism
3.
Plant Dis ; 107(9): 2751-2762, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36973901

ABSTRACT

Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-ß-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.


Subject(s)
Brassica , Pectobacterium , Pectobacterium carotovorum/genetics , Phylogeny , Pectobacterium/genetics , Brassica/microbiology , China , Plants , Bacteria/genetics , DNA, Bacterial/genetics , Polymerase Chain Reaction
4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675099

ABSTRACT

Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.


Subject(s)
Actinomycetales , Bacteriophages , Prophages/genetics , Phylogeny , Bacteriophages/genetics , Genomics , Bacteria
5.
Plant Dis ; 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471471

ABSTRACT

Curtobacterium flaccumfaciens pv. flaccumfaciens (H.) Collins & Jones is known as a pathogen of different legume crops, including soybean (Glycine max (L.) Merr.) (Hedges 1922; Dunleavy 1983). OEPP/EPPO (2011) considers C. flaccumfaciens pv. flaccumfaciens as present in Russia based on reports of the disease on common beans in two regions of Russia (North Caucasus and Far East) made without proper pathogen identification. During the summer of 2020 and the spring of 2021, soybean plants with tan spot disease (10-40% of plants) were reported during routine assays of several fields in Stavropol Krai (44.72°N, 43.29°E). After harvest in 2021, we inspected 48 soybean seed lots collected in different regions of Russia for the presence of C. flaccumfaciens pv. flaccumfaciens. Seed testing was performed using the OEPP/EPPO (2011) protocol. For bacteria isolation, seed extracts were spread on MSCFF agar plates (Maringoni et al. 2006). After 5 days of incubation at 28°C potential, C. flaccumfaciens pv. flaccumfaciens colonies were used for further tests on NSA and SSM agar (Tegli et al. 2017, Maringoni et al. 2016). Six seed lots produced in Stavropol, Ryazan (53.95°N, 40.62°E), Orel (52.39°N, 37.69°E) and Amur (51.31°N, 128.22°E) regions were suspect. Ten isolates (SB1 to SB4 from Stavropol, F-125-1 to F-125-3 from Ryazan, and F-30-1 to F-30-3 from Amur) were selected, and further identified by morphological, physiological, and biochemical properties, MALDI TOF MS, 16S rRNA sequences, and specific primers CffFOR2 and CffREV4 (Tegli et al. 2017). Isolates consistently formed yellow, circular, smooth colonies on agar, and were identical to C. flaccumfaciens pv. flaccumfaciens type strain DSM 20129T in diagnostic physiological properties (Tegli et al. 2017). DNA was isolated from the bacteria by the CytoSorb Kit (Sintol, Moscow). All tested strains were positive in the PCR assay (Fig. 1). 16S rRNA fragments were amplified using primers 27F/1492R (Marchesi et al. 1998) and PCR products were sequenced (Evrogen, Moscow, Russia). The obtained 16S rRNA sequences (1473 bp, Accession No. OL539808.1-OL539817.1) were 100% identical to DSM 20129T (AM410688.1) according to a BLAST NCBI search. A pathogenicity test was done by leaf-cutting with scissors wetted with inoculum (for soybeans) or by injecting 5 microliters of the bacterial suspension (108 CFU/ml) into the stem (for common beans). All ten isolates for the inoculum were grown on nutrient agar for 72 h at 28°C. Soybean cv. Kasatka plants (stage V1) were used for inoculation, and common bean (cv. Purpurnaya) plants were inoculated as well to confirm multi-host virulence. Sterile water served as a control. Ten plantlets were used as replicates for each treatment. The plants were incubated at 24°C, 80% RH, and a 14 hour light/10 hour dark cycle. Tan spots (soybean) and wilt (beans) have developed 7-21 d.p.i (Fig. 2.1-2.6). Control plants remained asymptomatic. Seed inoculation by soaking them in the same bacterial suspension repeatedly produced twisted primary root (Fig. 2.7-2.8), but typical disease symptoms on leaves developed in 4-5 weeks only. The pathogen was successfully reisolated from all infected plants and not from the controls, thus fulfilling Koch's postulates. The identity of the reisolated strains was confirmed using morphological and physiological characteristics and the DNA sequence data for the 16S rRNA. These results indicated that a causal agent of the tan spot is present on soybean in three important agricultural areas of Russia (South, Central, and the Far East). To the best of our knowledge, this is the first report of C. flaccumfaciens pv. flaccumfaciens causing a bacterial tan spot of soybean in Russia.

6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232343

ABSTRACT

Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.


Subject(s)
Bacteriophages , Pectobacterium , Podoviridae , Bacteriophages/genetics , Genome, Viral , Pectobacterium/genetics , Phylogeny , Podoviridae/genetics , Polysaccharides
7.
Plant Dis ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36281013

ABSTRACT

In the summer of 2018, wilt and leaf spots were observed on sunflower (Helianthus annuus L.) plants in fields near Kursk (51.74°N, 36.02°E) in Russia. In the following years, incidence of this disease was 5 to 20% in the inspected fields. Marginal chlorosis on seedling leaves developed into wilt and necrosis about one week later (Fig. 1). Mature plants had leaves with blight and reduced height compared to symptomless plants. Pathogen isolation from seeds was done by the method of Tegli et al. (2002) with modifications. Bacteria from diseased plants were isolated by streaking inoculum from symptomatic tissues on nutrient dextrose agar (NDA) (Schaad et al. 1988). The plates were incubated at 30°C for 7 to 10 days. Isolates consistently formed slow-growing, yellow, circular, smooth colonies without soluble pigment. The isolated bacteria were aerobic, gram-positive, and rod-shaped. Eight strains, CF-20 to CF-26 from plants, and Curt1 and Curt3 from seeds, were identified by MALDI TOF MS analysis as Curtobacterium flaccumfaciens pv. flaccumfaciens or C. flaccumfaciens pv. poinsettiae. All strains had GENIII MicroPlate (BIOLOG) test results identical to C. flaccumfaciens pv. flaccumfaciens strain DSM20129T. Further analysis was done by specific PCR (Tegli et al. 2002) and 16S rDNA, gyrB, and atpD gene sequencing. For PCR amplification, DNA was extracted by the CitoSorb Kit (Syntol Co., Moscow). Primers 27F/1492R (16S rRNA) (Marchesi et al. 1998), 2F/6R (gyrB) (Richert et al. 2005), and aptD2F/aptD2R (Jacques et al. 2012) were used to amplify the target gene sequences. The PCR products were sequenced by Evrogen (Moscow). The 16S rRNA sequences (OL584192.1 to OL584199.1) were identical to that of C. flaccumfaciens pv. flaccumfaciens strain DSM20129T (AM410688.1; 1,477/1,477 bp). The phylogenetic tree of concatenated gyrB (560 bp) and atpD (716 bp) sequences (OL548915.1 to OL548922.1 and OL548923.1 to OL548930.1, respectively) clustered the strains from sunflower among C. flaccumfaciens pv. flaccumfaciens, C. flaccumfaciens pv. betae, and C. flaccumfaciens pv. oortii (Fig. 2) with high genetic similarity to other C. flaccumfaciens strains: 96.3 to 100% for atpD and 95 to 100% for gyrB. A pathogenicity test for each of the strains was performed by injecting 5 µl of a bacterial suspension (108 CFU/ml) grown for 72 h on NDA into the stems of five plantlets (four true leaf stage) of the sunflower cv. Tunka (Limagrain, France) and soybean cv. Kasatka (VIM, Russia). Strain DSM20129T was a positive control, while sterile water was a negative control. The plants were incubated at 24°C, 80% relative humidity, and 14-h light/day. Wilting and blight on sunflower (Fig. 3) and tan spots on soybean were observed in 15 to 20 days after inoculation for all sunflower strains and strain DSM20129T. The negative control plants were asymptomatic. The bacteria re-isolated from the inoculated plants exhibited the same morphological characteristics and 16S rDNA sequence as the original culture, thus fulfilling Koch's postulates. The presence of C. flaccumfaciens pv. flaccumfaciens in sunflower seeds indicated that the bacterium was transmitted via seed. Sunflower has been previously reported as a host for the pathogen (Harveson et al. 2015). The presence of C. flaccumfaciens pv. flaccumfaciens on beans in Russia was suggested from the disease symptoms (Nikitina and Korsakov 1978), but, to our knowledge, this is the first report of the pathogen affecting sunflower in Russia. Phytosanitary categorization placed C. flaccumfaciens pv. flaccumfaciens in the EPPO A2 list (EPPO 2011). Thus, sunflower seeds should be tested to protect pathogen-free areas from introduction of this pathogen.

8.
J Fungi (Basel) ; 8(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36135673

ABSTRACT

Plant litter decomposition is a complex, long-term process. The decomposition of litterfall is a major process influencing nutrient balance in forest soil. The soil microbiome is exceptionally diverse and is an essential regulator of litter decomposition. However, the microbiome composition and the interaction with litterfall and soil remain poorly understood. In this study, we examined the bacterial and fungal community composition of Lithocarpus across soil samples from different sampling seasons. Our results displayed that the microbiome assembly along the soil layer is influenced predominantly by the soil layer rather than by the sampling season. We identified that the soil layer strongly affected network complexity and that bacterial and fungal microbiomes displayed different patterns in different soil layers. Furthermore, source tracking and community composition analysis indicated that there are significantly different between soil and litter. Moreover, our results demonstrate that few dominant taxa (2% and 4% of bacterial and fungal phylotypes) dominated in the different soil layers. Hydnodontaceae was identified as the most important biomarker taxa for humic fragmented litter fungal microbiome and Nigrospora and Archaeorhizomycetaceae for organic soil and the organic mineral soil layer, and the phylum of Acidobacteria for the bacteria microbiome. Our work provides comprehensive evidence of significant microbiome differences between soil layers and has important implications for further studying soil microbiome ecosystem functions.

9.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36142829

ABSTRACT

Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.


Subject(s)
Actinomycetales , Bacterial Infections , Bacteriophages , Fabaceae , Actinobacteria , Bacteria , Fabaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Glycine max
10.
Curr Issues Mol Biol ; 44(2): 889-927, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35723345

ABSTRACT

The genus of Curtobacterium, belonging to the Microbacteriaceae family of the Actinomycetales order, includes economically significant pathogenic bacteria of soybeans and other agricultural crops. Thorough phylogenetic and full-genome analysis using the latest genomic data has demonstrated a complex and contradictory taxonomic picture within the group of organisms classified as the Curtobacterium species. Based on these data, it is possible to delineate about 50 new species and to reclassify a substantial part of the Curtobacterium strains. It is suggested that 53 strains, including most of the Curtobacterium flaccumfaciens pathovars, can compose a monophyletic group classified as C. flaccumfaciens. A genomic analysis using the most recent inventory of bacterial chromosomal and plasmid genomes deposited to GenBank confirmed the possible role of Microbacteriaceae plasmids in pathogenicity and demonstrated the existence of a group of related plasmids carrying virulence factors and possessing a gene distantly related to DNA polymerase found in bacteriophages and archaeal and eukaryotic viruses. A PCR diagnostic assay specific to the genus Curtobacterium was developed and tested. The presented results assist in the understanding of the evolutionary relations within the genus and can lay the foundation for further taxonomic updates.

11.
Plants (Basel) ; 11(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406917

ABSTRACT

Bacterial viruses (bacteriophages) have been considered as potential agents for the biological control of bacterial phytopathogens due to their safety and host specificity. Pseudomonas savastanoi pv. glycinea (Psg) is a causative agent of the bacterial spotting of soybean (Glycine max Willd). The harm caused by this bacterium to crop production and the development of antibiotic resistance in Psg and other pathogenic microorganisms has led to the pursuit of alternative management strategies. In this study, three Psg-specific lytic bacteriophages were isolated from soybean field soil in geographically distant regions of Russia, and their potential for protective action on plants was assessed. Sequencing of phage genomes has revealed their close relatedness and attribution to the genus Ghunavirus, subfamily Studiervirinae, family Autographiviridae. Extensive testing of the biological properties of P421, the representative of the isolated phage group, has demonstrated a relatively broad host range covering closely related Pseudomonas species and stability over wide temperature (4-40 °C) and pH (pH 4-7) ranges, as well as stability under ultraviolet irradiation for 30 min. Application of the phages to prevent, and treat, Psg infection of soybean plants confirms that they are promising as biocontrol agents.

12.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34638693

ABSTRACT

Pseudomonas phage MD8 is a temperate phage isolated from the freshwater lake Baikal. The organisation of the MD8 genome resembles the genomes of lambdoid bacteriophages. However, MD8 gene and protein sequences have little in common with classified representatives of lambda-like phages. Analysis of phage genomes revealed a group of other Pseudomonas phages related to phage MD8 and the genomic layout of MD8-like phages indicated extensive gene exchange involving even the most conservative proteins and leading to a high degree of genomic mosaicism. Multiple horizontal transfers and mosaicism of the genome of MD8, related phages and other λ-like phages raise questions about the principles of taxonomic classification of the representatives of this voluminous phage group. Comparison and analysis of various bioinformatic approaches applied to λ-like phage genomes demonstrated different efficiency and contradictory results in the estimation of genomic similarity and relatedness. However, we were able to make suggestions for the possible origin of the MD8 genome and the basic principles for the taxonomic classification of lambdoid phages. The group comprising 26 MD8-related phages was proposed to classify as two close genera belonging to a big family of λ-like phages.


Subject(s)
Bacteriophage lambda , Genes, Viral , Pseudomonas Phages , Bacteriophage lambda/classification , Bacteriophage lambda/genetics , Pseudomonas Phages/classification , Pseudomonas Phages/genetics
13.
Plants (Basel) ; 10(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34579412

ABSTRACT

Pectobacterium parmentieri is a plant-pathogenic bacterium, recently attributed as a separate species, which infects potatoes, causing soft rot in tubers. The distribution of P. parmentieri seems to be global, although the bacterium tends to be accommodated to moderate climates. Fast and accurate detection systems for this pathogen are needed to study its biology and to identify latent infection in potatoes and other plant hosts. The current paper reports on the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for P. parmentieri, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 102 cfu/mL on pure bacterial cultures and 102-103 cfu/mL on plant material. The specificity of the protocol was evaluated against P. parmentieri and more than 100 strains of potato-associated species of Pectobacterium and Dickeya. No cross-reaction with the non-target bacterial species, or loss of sensitivity, was observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range for P. parmentieri and will expand knowledge of the life cycle and environmental preferences of this pathogen.

14.
Microorganisms ; 9(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34576713

ABSTRACT

The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.

15.
Viruses ; 13(6)2021 06 08.
Article in English | MEDLINE | ID: mdl-34201375

ABSTRACT

Using bacteriophages (bacterial viruses) to control pathogenic bacteria is a promising approach in horticulture. However, the application of this strategy in real conditions requires compliance with particular technological and environmental restraints. The presented paper concerns the process of phage selection to create a cocktail that is efficient against the circulating causal agents of potato soft rot. The resulting phage cocktail causes a complete lysis of a mixture of circulating pectobacterial strains in vitro. In the context of being used to treat ware potatoes during off-season storage, the protocol of phage application via the humidity maintenance system was designed. The phage cocktail was shown to reduce the population of Pectobacterium spp. 10-12-fold, achieving a population that was below a symptomatic threshold.


Subject(s)
Bacteriophages/physiology , Biological Control Agents/pharmacology , Pectobacterium/physiology , Plant Diseases/prevention & control , Solanum tuberosum/virology , Plant Diseases/microbiology
16.
Plants (Basel) ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668425

ABSTRACT

The recent taxonomic diversification of bacterial genera Pectobacterium and Dickeya, which cause soft rot in plants, focuses attention on the need for improvement of existing methods for the detection and differentiation of these phytopathogens. This research presents a whole genome-based approach to the selection of marker sequences unique to particular species of Pectobacterium. The quantitative real-time PCR assay developed is selective in the context of all tested Pectobacterium atrosepticum strains and is able to detect fewer than 102 copies of target DNA per reaction. The presence of plant DNA extract did not affect the sensitivity of the assay.

17.
Plant Dis ; 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33496602

ABSTRACT

Blackleg and soft rot of potato (Solanum tuberosum) were monitored in the Central European part of Russia within a period of 2012- 2019. Symptoms included decay of tubers, blackening of stem vascular bundles, and partial yellowing of leaves. The disease causes serious potato yield losses in the field and storage. Pectobacterium parmentieri, P. brasiliense, P. versatile (syn. Ca. Pectobacterium maceratum), P. carotovorum, P. atrosepticum, Dickeya dianthicola, and D. solani are considered as main causal agents of soft rot and blackleg disease in Russia (Voronina et al. 2019, Ngoc Ha et al., 2019, Shirshikov et al. 2018, Kornev et al. 2012). Potato plant samples collected in commercial fields in routine plant health assay were used for bacteria isolation on crystal violet pectate agar (CVP) (Helias et al. 2012) as described previously (Voronina et al. 2019). Bacterial colonies producing pitting on CVP were re-isolated and purified on nutrient broth yeast extract medium. DNA of bacterial isolates was extracted, and polymerase chain reaction (PCR) amplifications were performed using gapA primers (Cigna et al. 2017) followed by sequencing. DNA sequence alignment showed that the isolates F099, F100, F106, F109, and F118 were identical (deposited as part of NCBI Ref.Seq. for F109 NZ_RRYS01000004.1, locus KHDHEBDM_RS06360) and grouped together with the type strain Pectobacterium polaris NIBIO1006T (CP017481), a new species described as a potato pathogen (Dees et al. 2017). These strains were negative in diagnostic PCR assays using specific primers Y45/Y46 for the detection of P. atrosepticum, Br1f and L1r for P. brasiliense (Duarte et al. 2004), and ADE1/ADE2 for Dickeya sp. (Nassar et al. 1996). To further validate the identification, strain F109 of P. polaris was selected for genome sequencing. The genome of P. polaris strain F109, (NCBI Reference Sequence NZ_RRYS00000000.1) reveals >99% sequence similarity with type strain P. polaris IPO_1606 (GenBank accession GCA_902143345.1). The strain F109 was deposited to All-Russian Collection of Microorganisms under number VKM V-3420. Thus, the characterization of five isolates provided evidence that a previously unreported pathogen was present in the surveyed fields. The isolates were uniform in genetic and physiological properties; they were gram negative, facultative anaerobes with pectinolytic activity, negative for oxidase, urease, indole production, gelatin liquefaction. All isolates were catalase positive, produced acid from lactose, rhamnose, saccharose, xylose, and trehalose, and were tolerant to 5% NaCl, unable to utilize malonate and citrate. All the isolates grew at 37°C. All isolates caused soft rot symptoms on 10 inoculated potato tubers. They produced typical black leg rot symptoms in young potato plants inoculated with 107 CFU/ml of the pathogen by stem injection and incubated at 25°C for 48 h. The bacteria were re-isolated successfully from symptomatic potato and pathogen confirmed by gapA sequencing to complete Koch's postulates. To our knowledge, this is the first report of blackleg and soft rot caused by P. polaris on potato in the Russian Federation. According to the data of commercial diagnostic laboratory "PhytoEngineering" (Moscow region), P. polaris occurred in 5% potato seed stocks harvested in 2017-2019 in the Moscow region. This finding may indicate that new Pectobacterium strains have adapted to a diverse environment, which is consistent with widespread distribution of commercial seed potatoes. The author(s) declare no conflict of interest. Funding: This work was supported by Russian Science Foundation grant #16-16-00073.

18.
Microorganisms ; 8(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142811

ABSTRACT

Black leg and soft rot are devastating diseases causing up to 50% loss of potential potato yield. The search for, and characterization of, bacterial viruses (bacteriophages) suitable for the control of these diseases is currently a sought-after task for agricultural microbiology. Isolated lytic Pectobacterium bacteriophages Q19, PP47 and PP81 possess a similar broad host range but differ in their genomic properties. The genomic features of characterized phages have been described and compared to other Studiervirinae bacteriophages. Thorough phylogenetic analysis has clarified the taxonomy of the phages and their positioning relative to other genera of the Autographiviridae family. Pectobacterium phage Q19 seems to represent a new genus not described previously. The genomes of the phages are generally similar to the genome of phage T7 of the Teseptimavirus genus but possess a number of specific features. Examination of the structure of the genes and proteins of the phages, including the tail spike protein, underlines the important role of horizontal gene exchange in the evolution of these phages, assisting their adaptation to Pectobacterium hosts. The results provide the basis for the development of bacteriophage-based biocontrol of potato soft rot as an alternative to the use of antibiotics.

19.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365879

ABSTRACT

Phytopathogenic bacteria belonging to the Pectobacterium and Dickeya genera (soft-rot Pectobacteriaceae) are in the focus of agriculture-related microbiology because of their diversity, their substantial negative impact on the production of potatoes and vegetables, and the prospects of bacteriophage applications for disease control. Because of numerous amendments in the taxonomy of P. carotovorum, there are still a few studied sequenced strains among this species. The present work reports on the isolation and characterization of the phage infectious to the type strain of P. carotovorum. The phage Arno 160 is a lytic Podovirus representing a potential new genus of the subfamily Autographivirinae. It recognizes O-polysaccahride of the host strain and depolymerizes it in the process of infection using a rhamnosidase hydrolytic mechanism. Despite the narrow host range of this phage, it is suitable for phage control application.


Subject(s)
Bacteriophages/physiology , Pectobacterium carotovorum/metabolism , Pectobacterium carotovorum/virology , Amino Acid Sequence , Bacteriophages/ultrastructure , Genome, Viral , Genomics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Phylogeny , Polymerization , Polysaccharides, Bacterial/chemistry , Protein Binding , Viral Proteins/chemistry
20.
Front Microbiol ; 10: 3147, 2019.
Article in English | MEDLINE | ID: mdl-32038580

ABSTRACT

Soft rot caused by numerous species of Pectobacterium and Dickeya is a serious threat to the world production of potatoes. The application of bacteriophages to combat bacterial infections in medicine, agriculture, and the food industry requires the selection of comprehensively studied lytic phages and the knowledge of their infection mechanism for more rational composition of therapeutic cocktails. We present the study of two bacteriophages, infective for the Pectobacterium brasiliense strain F152. Podoviridae PP99 is a representative of the genus Zindervirus, and Myoviridae PP101 belongs to the still unclassified genomic group. The structure of O-polysaccharide of F152 was established by sugar analysis and 1D and 2D NMR spectroscopy: → 4)-α-D-Manp6Ac-(1→ 2)-α-D-Manp-(1→ 3)-ß-D-Galp-(1→ 3 ↑ 1 α -l- 6 dTal p Ac 0 - 2 The recombinant tail spike protein of phage PP99, gp55, was shown to deacetylate the side chain talose residue of bacterial O-polysaccharide, thus providing the selective attachment of the phage to the cell surface. Both phages demonstrate lytic behavior, thus being prospective for therapeutic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...